Chứng minh rằng
\(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}
chứng minh rằng:\(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+\frac{1}{64}+\frac{1}{100}+...+\frac{1}{10000}
\(\frac{1}{2^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}=\frac{1}{2^2}\cdot\left(1+\frac{1}{2^2}+...+\frac{1}{50^2}\right)
Chứng tỏ rằng: \(\frac{1}{2}< \frac{1}{2}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{9801}+\frac{1}{10000}< \frac{37}{50}\)
chứng tỏ rằng
102004 + 14 chia hết cho cả 3 và 2
\(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}
Chứng minh rằng:
\(\frac{1}{4}\)+\(\frac{1}{16}\)+\(\frac{1}{36}\)+\(\frac{1}{64}\)+\(\frac{1}{100}\)+...+\(\frac{1}{10000}\)<\(\frac{1}{2}\)
\(S=\frac{1}{4}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
\(S< \frac{1}{4}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)
\(S< \frac{1}{4}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(S< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)
\(S< \frac{1}{4}.\frac{99}{50}=\frac{99}{200}< \frac{1}{2}\)
VẬY\(S< \frac{1}{2}\)
Chứng minh rằng \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}< \frac{1}{100}\)
Ta có:
\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\)
Đặt \(I=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)
Ta có: \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};.....;\frac{9999}{10000}< \frac{10000}{10001}\)
\(\Rightarrow C< D\)
Lại có: \(C\cdot D=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\right)\)
\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)
\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{10000}{10001}\)
\(\Leftrightarrow C\cdot D=\frac{1}{10001}\)
Mà C<D \(\Rightarrow C\cdot C< C\cdot D\)
Hay \(C\cdot C< \frac{1}{10001}\)
\(\Rightarrow C< \frac{1}{10001}< \frac{1}{100}\)
Vậy \(C< \frac{1}{100}\left(đpcm\right)\)
Chứng minh rằng:
\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
Đặt :\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)
\(N=\frac{2}{3}.\frac{4}{5}...\frac{10000}{10001}\)
Ta thấy:\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};....;\frac{9999}{10000}< \frac{10000}{10001}\)
Mặt khác ta thấy:
\(C.N=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{10000}{10001}\right)\)
\(C.N=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{9999}{10000}.\frac{10000}{10001}\)
\(C.N=\frac{1.2.3....9999.10000}{2.3.4....10000.10001}\)
Rút gọn phép tính \(C.N\)
\(C.N=\frac{1}{10001}\)
\(C.C< N\Rightarrow C.C< C.N\)
Hay\(C.C< \frac{1}{10001}< \frac{1}{10000}=\frac{1}{10}.\frac{1}{10}\)
\(\Rightarrow C< \frac{1}{10000}\)(đpcm)
Cho \(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{9999}{10000}\). Chứng minh rằng : S\(\notin\)N.
Ta có : \(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{15}+...+\frac{1}{10000}\right)\)
\(=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)< 99\)
\(\Rightarrow\)S<99 (1)
Đặt \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\)
\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có : \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}=\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}< 1\)
\(\Rightarrow\)S>99-1=98 (2)
Từ (1) và (2)
\(\Rightarrow\)98<S<99
\(\Rightarrow\)S\(\notin\)N
Vậy S\(\notin\)N.
Chứng minh rằng :
a) \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
b) \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)
a) Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
. . .
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{2^2}\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\right)\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(1+1-\frac{1}{50}\right)\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{4}\cdot\frac{99}{50}=\frac{99}{200}< \frac{100}{200}=\frac{1}{2}\left(đpcm\right)\)
b) Ta có :
\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}>48\)
\(\Rightarrow1-\frac{1}{4}+1-\frac{1}{9}+...+1-\frac{1}{2500}>48\)
\(\Rightarrow49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< 49\)
Lại có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
. . .
\(\frac{1}{50^2}< \frac{1}{49\cdot50}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{49}{50}< 1\)
\(\Rightarrow-\left(\frac{1}{2^2}+...=\frac{1}{50^2}\right)>1\)
\(\Rightarrow49-\left(\frac{1}{2^2}+...+\frac{1}{50^2}\right)>49-1=48\)
hay \(\frac{3}{4}+\frac{8}{9}+...+\frac{2499}{2500}>48\left(đpcm\right)\)
Cho S= \(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\frac{1}{25}+\frac{1}{36}+\frac{1}{49}+\frac{1}{64}+\frac{1}{81}\)
Chứng minh rằng S < \(\frac{1}{2}\)
Giúp mình, mk cần gấp. Bạn nào nhanh mình tick cho