cho 1/x+1/y+1/z=0. cm xyz(1/x^3+1/y^3+1/z^3)=3
Cho 1/x + 1/y + 1/z = 0 . CM : xyz[ 1/(x)^3 + 1/(y)^3 + 1/(z)^3] = 3
Cho x, Y, z khác 0 thỏa mãn (x-y-z) ^2=x^2+y^2+z^2 Cm 1/x^3 -1/y^3 -1/z^3=3/xyz
Cho x,y,x > 0. Chứng minh 1/ x^3 + y^3+ xyz + 1/ y^3+ +z^3+ xyz + 1/ z^3+ x^3+ xyz < hay = 1/xyz
Với x ; y > 0 , cần c/m : \(x^3+y^3\ge xy\left(x+y\right)\)
Ta có : \(x^3+y^3-xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2-xy\right)=\left(x+y\right)\left(x-y\right)^2\ge0\)
( điều này luôn đúng với mọi x ; y > 0 )
=> BĐT được c/m
Áp dụng vào bài toán , ta có :
\(\frac{1}{x^3+y^3+xyz}+\frac{1}{y^3+z^3+xyz}+\frac{1}{x^3+z^3+xyz}\le\frac{1}{xy\left(x+y\right)+xyz}+\frac{1}{yz\left(y+z\right)+xyz}+\frac{1}{xz\left(x+z\right)+xyz}=\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=z;x,y,z>0\)
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
và x,y,x khác 0
CM: \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Leftrightarrow\)\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^3=0^3\)
\(\Leftrightarrow\)\(\left(\frac{1}{x}\right)^3+\left(\frac{1}{y}\right)^3+\left(\frac{1}{z}\right)^3+3\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{z}+\frac{1}{x}\right)=0\)
\(\Leftrightarrow\)\(\frac{1^3}{x^3}+\frac{1^3}{y^3}+\frac{1^3}{z^3}=-3\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{z}+\frac{1}{x}\right)\)
Lại có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\)\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\\\frac{1}{y}+\frac{1}{z}=\frac{-1}{x}\\\frac{1}{z}+\frac{1}{x}=\frac{-1}{y}\end{cases}}\)
\(\Leftrightarrow\)\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\left(-3\right).\frac{-1}{z}.\frac{-1}{x}.\frac{-1}{y}\)
\(\Leftrightarrow\)\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\) ( đpcm )
Vậy nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)
Chúc bạn học tốt ~
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{1}{x}+\frac{1}{y}=\frac{-1}{z}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)^3=\left(-\frac{1}{z}\right)^3\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{3}{x^2y}+\frac{3}{xy^2}=-\frac{1}{z^3}\)
\(\Leftrightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{-3}{x^2y}-\frac{3}{xy^2}=\frac{-3}{xy}.\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{-3}{xy}.-\frac{1}{z}=\frac{3}{xyz}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z};\frac{1}{x}+\frac{1}{z}=-\frac{1}{y};\frac{1}{y}+\frac{1}{z}=-\frac{1}{x}\)
\(2\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\left(\frac{1}{x^3}+\frac{1}{z^3}\right)+\left(\frac{1}{y^3}+\frac{1}{z^3}\right)\)
\(=\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x^2}-\frac{1}{xy}+\frac{1}{y^2}\right)+\left(\frac{1}{x}+\frac{1}{z}\right)\left(\frac{1}{x^2}-\frac{1}{xz}+\frac{1}{z^2}\right)+\left(\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{y^2}-\frac{1}{yz}+\frac{1}{z^2}\right)\)
\(=-\frac{1}{z}\left(\frac{1}{x^2}-\frac{1}{xy}+\frac{1}{y^2}\right)-\frac{1}{y}\left(\frac{1}{x^2}-\frac{1}{xz}+\frac{1}{z^2}\right)-\frac{1}{x}\left(\frac{1}{y^2}-\frac{1}{yz}+\frac{1}{z^2}\right)\)
\(=-\frac{1}{x^2z}+\frac{1}{xyz}-\frac{1}{y^2z}-\frac{1}{x^2y}+\frac{1}{xyz}-\frac{1}{yz^2}-\frac{1}{xy^2}+\frac{1}{xyz}-\frac{1}{xz^2}\)
\(=\left(-\frac{1}{x^2z}-\frac{1}{x^2y}\right)+\left(-\frac{1}{xy^2}-\frac{1}{y^2z}\right)+\left(-\frac{1}{xz^2}-\frac{1}{yz^2}\right)+\frac{3}{xyz}\)
\(=-\frac{1}{x^2}\left(\frac{1}{z}+\frac{1}{y}\right)-\frac{1}{y^2}\left(\frac{1}{x}+\frac{1}{z}\right)-\frac{1}{z^2}\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{3}{xyz}\)
\(=-\frac{1}{x^2}\cdot-\frac{1}{x}+-\frac{1}{y^2}\cdot-\frac{1}{y}+-\frac{1}{z^2}\cdot-\frac{1}{z}+\frac{3}{xyz}=\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}+\frac{3}{xyz}\)
\(\Rightarrow2\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}+\frac{3}{xyz}\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)(đpcm)
Cho x,y,z > 0 và xyz=1. Tìm GTLN của P = 1/(x^3(y^3+z^3)+1) + 1/(y^3(z^3+x^3)+1) + 1/(z^3(x^3+y^3)+1)
cho 1/x+1/y+1/z=0. tính A=xyz(1/x^3+1/y^3+1/z^3)
Lời giải:
Đặt $\frac{1}{x}=a; \frac{1}{y}=b; \frac{1}{z}=c$ thì bài toán trở thành:
Cho $a+b+c=0$. Tính $\frac{a^3+b^3+c^3}{abc}$
-----------------
Ta có:
$a+b+c=0\Rightarrow a+b=-c$. Khi đó:
$\frac{a^3+b^3+c^3}{abc}=\frac{(a+b)^3-3ab(a+b)+c^3}{abc}$
$=\frac{(-c)^3-3ab(-c)+c^3}{abc}=\frac{-c^3+3abc+c^3}{abc}=\frac{3abc}{abc}=3$
cho xyz=1 và x+y+z=1/x+1/y+1/z=0. tính giá trị M=x^6+y^6+z^6/x^3+y^3+z^3
Cho 1/x + 1/y + 1/z = 0. Chung minh xyz(1/x^3 + 1/y^3 + 1/z^3) = 3 .
cho x;y;z>0 và xyz=1 .Tìm GTLN của A=1/x^3+y^3+1 +1/y^3+z^3+1 +1/z^3+x^3+1
\(x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
=> \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)
Hai cái còn lại tương tự
=> A \(\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{1}{x+y+z}\cdot\frac{x+y+z}{xyz}=1\)
Vậy MAx A = 1 tại x = y = z = 1