Chứng tỏ rằng:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< 1\)
Chứng tỏ rằng\(^{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< 1}\)
Bài này nhiều người đăng lắm,bạn vào câu hỏi tương tự
Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
Đặt A =\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{3\cdot2}\)
...
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=1-\frac{1}{10}< 1\)
\(\Rightarrow B< A< 1\left(đpcm\right)\)
Chứng tỏ rằng:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< 1\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
....
\(\frac{1}{10^2}\)< \(\frac{1}{9.10}\)
=> \(\frac{1}{2^2}+....+\frac{1}{10^2}\)< \(\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{9.10}\)
=> \(\frac{1}{2^2}+....+\frac{1}{10^2}\)< \(\frac{9}{10}\)< 1
=> \(\frac{1}{2^2}+....+\frac{1}{10^2}\)< 1 ( dpcm )
\(\frac{1}{4}\)+\(\frac{1}{9}\)+
Chứng tỏ rằng
a)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{99^2}+\frac{1}{100^2}< \frac{3}{4}\)
b)\(4+2^2+2^3+2^4+.....+2^{10}=2^{11}.\)
chứng tỏ rằng :
a) \(1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-\frac{1}{2^4}-...-\frac{1}{2^{10}}>\frac{1}{2^{11}}\)
b) \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{100^2}>\frac{1}{100}\)
a) Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)=> \(2.A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
=> \(2.A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)
\(A=1-\frac{1}{2^{10}}\)=> \(1-A=1-\left(1-\frac{1}{2^{10}}\right)=\frac{1}{2^{10}}>\frac{1}{2^{11}}\)=> đpcm
b) Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
Vì \(\frac{1}{2^2}
Bài 6: Chứng tỏ rằng
D= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)<1
Ta có \(D=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{9.10}.\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}=\frac{9}{10}< 1\)
\(\Rightarrow D< 1\)
Vậy \(D< 1\)
Ta có: 1/22 < 1/1.2
1/32 < 1/2.3
1/42 < 1/3.4
......
1/102 < 1/9.10
=> D < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/9.10
=> D < 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 -1/10
=> D < 1 - 1/10
=> D < 9/10
=. D < 9/10 < 1
=> D < 1 ( đpcm )
Chứng tỏ rằng: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{3}{4}\)
Làm theo cách của Trắng nha ,
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{4}+\frac{1}{2}-\frac{1}{2019}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{3}{4}-\frac{1}{2019}< \frac{3}{4}\left(Đpcm\right)\)
Ta có: \(\frac{1}{2^2}=\frac{1}{2^2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{2019^2}< \frac{1}{2018.2019}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< \frac{1}{2^2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)
\(=\frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2019}\)
\(=\frac{1}{4}+\frac{2}{4}-\frac{1}{2019}\)
\(=\frac{3}{4}-\frac{1}{2019}\)\(< \frac{3}{4}\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2019^2}< \frac{3}{4}\)
Điều phải chứng minh
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}\)
Ta có:
\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)
....
\(\frac{1}{2019^2}=\frac{1}{2019.2019}< \frac{1}{2018.2019}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Rightarrow A< 1-\frac{1}{2019}\)
\(\Rightarrow A< \frac{2018}{2019}\)
đến đây mới thấy mik sai ,xin lỗi
Chứng tỏ rằng;
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{3}{4}\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{2019^2}\)
\(\Rightarrow A=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2019^2}\right)\)
\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\right)\)
\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+..+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(\Rightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{2019}\right)\)
\(\Rightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{2019}=\frac{3}{4}-\frac{1}{2019}< \frac{3}{4}\)
\(\Rightarrow A< \frac{3}{4}\)
đặt A=1/2^2+....+1/2019^2
vì 1/2^2+....+1/2019^2<1/1.2+1/2.3+....+1/2018.2019
=> A<1/1-1/2+1/2-1/3+.....+1/2018-1/2019
=> A<1-1/2019=2018/2019<3/4.
=> A<3/4.
vậy 1/2^2+....+1/2019^2<3/4
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)\(+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2019}\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< 1-\frac{1}{2019}\)
\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2019^2}< \frac{2018}{2019}\)
Mà: \(\frac{3}{4}=\frac{2016}{2688}< \frac{2017}{2688}< \frac{2017}{2019}< \frac{2018}{2019}\)
\(\Rightarrow\frac{3}{4}< \frac{2018}{2019}\)
Chứng tỏ rằng:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}< \frac{3}{4}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}\)
\(\text{Vì}\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{2011^2}< \frac{1}{2010.2011}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2010.2011}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{2011}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}< \frac{1}{4}+\frac{1}{2}-\frac{1}{2011}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2011^2}< \frac{3}{4}-\frac{1}{2011}< \frac{3}{4}\)
\(\Rightarrowđpcm\)
a) Tìm A biết: \(A=\frac{7}{10}+\frac{7}{10^2}+\frac{7}{10^3}+...\)
b) Chứng tỏ rằng: 1/2+1/3+1/4+...+1/63>2
a) \(A=\frac{7}{10}+\frac{7}{10^2}+\frac{7}{10^3}+...\)
\(A=\frac{777...}{1000...}\)
b) 1/2+1/3+1/4+…+1/63=1/2+(1/3+1/4)+(1/5+1/6+…+1/10)+(1/11+1/12+….+1/20)+(1/21+1/22+….1/63).
Ta thấy:
1/3+1/4>1/4+1/4=1/2
1/5+1/6+…+1/10>5/10=1/2
1/11+1/12+….+1/20>10/20=1/2
Thêm.cái 1/2 sắn có là đủ >2 rồi nhể