Những câu hỏi liên quan
H24
Xem chi tiết
KF
9 tháng 5 2015 lúc 21:38

\(\frac{1}{2^2}+\)\(\frac{1}{3^2}+\)\(\frac{1}{4^2}+\)...+\(\frac{1}{2015^2}+\)\(\frac{1}{2015}\)

<\(\frac{1}{1.2}+\)\(\frac{1}{3.4}+\)\(\frac{1}{4.5}+\)...+\(\frac{1}{2014.2015}\)+\(\frac{1}{2015}\)

Ta có:\(\frac{1}{1.2}+\)\(\frac{1}{3.4}+\)\(\frac{1}{4.5}+\)...+\(\frac{1}{2014.2015}\)+\(\frac{1}{2015}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}\)

=1

=>\(\frac{1}{2^2}+\)\(\frac{1}{3^2}+\)\(\frac{1}{4^2}+\)...+\(\frac{1}{2015^2}+\)\(\frac{1}{2015}\) \(

Bình luận (0)
H24
9 tháng 5 2015 lúc 21:47

Ta có : \(\frac{1}{2^2}

Bình luận (0)
AB
29 tháng 4 2018 lúc 9:38

Katherine làm sai cmnr \(\frac{1}{2^2}\)giải kiểu gì ra\(\frac{1}{1.2}\)

Bình luận (0)
PK
Xem chi tiết
SG
24 tháng 7 2016 lúc 10:58

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)

                                                                            \(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(< 1-\frac{1}{2016}< 1\left(đpcm\right)\)

Bình luận (0)
VN
26 tháng 3 2017 lúc 15:49

Thằng vua hải tặc vàng oai vừa thôi !

Bình luận (0)
VV
26 tháng 3 2017 lúc 22:20

thi sao

Bình luận (0)
TT
Xem chi tiết
HA
Xem chi tiết
TN
29 tháng 6 2017 lúc 15:34

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..........+\frac{1}{2015^2}\)

\(\Leftrightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{2014.2025}\)

\(\Leftrightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{2014.2015}\)

\(\Leftrightarrow B< 1-\frac{1}{2015}< 1\)

\(\Leftrightarrow B< 1\rightarrowđpcm\)

Bình luận (0)
DT
29 tháng 6 2017 lúc 16:12

Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2014\cdot2015}\)

+ Xét : \(\frac{1}{1\cdot2}>\frac{1}{2^2}\)

\(\frac{1}{2\cdot3}>\frac{1}{3^2}\)

\(\frac{1}{3\cdot4}>\frac{1}{4^2}\)

...

\(\frac{1}{2015^2}< \frac{1}{2014\cdot2015}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(A=1-\frac{1}{2015}< 1\)

\(\Rightarrow B< A< 1\left(đpcm\right)\)

Bình luận (0)
AD
Xem chi tiết
NC
18 tháng 4 2019 lúc 12:53

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}=\frac{2015}{2016}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}< \frac{2015}{2016}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{2016}-\frac{1}{2017}\)

\(=\frac{1}{2}-\frac{1}{2017}=\frac{2015}{4024}\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2016^2}>\frac{2015}{4034}\)

vậy ta có điều cần chứng minh

Bình luận (0)
TT
Xem chi tiết
TP
14 tháng 2 2019 lúc 18:15

Vì \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};...;\frac{1}{2015^2}< \frac{1}{2014\cdot2015}\)

\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2014\cdot2015}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}< 1\)

Vậy \(A< 1\left(đpcm\right)\)

Bình luận (0)
H24
14 tháng 2 2019 lúc 18:16

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2015^2}< \frac{1}{2014.2015}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}< 1^{\left(đpcm\right)}\)

Bình luận (0)
DM
Xem chi tiết
TN
18 tháng 12 2016 lúc 23:27

tớ cũng không biết đâu .Nếu tìm ra cách giải thì nhắn tin cho tớ nha

Bình luận (0)
DM
21 tháng 12 2016 lúc 16:11

Bài này trước tiên ta phải đi chứng minh công thức:

                      \(\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

 Xong áp dụng là ra thui.
 

Bình luận (0)
H24
22 tháng 12 2016 lúc 10:01

Hay thật Công thức rất hay c/m không phức tạp lắm.

nhưng từ bài toán ban đầu tự nhiên nội suy ra được cái công thức đó. Khó nhỉ

Bình luận (0)
RH
Xem chi tiết
ND
Xem chi tiết