Tính giá trị biểu thức A=3^2/1.4+3^2/4.7+…+3^2/196.199
Tính: A= 2/1.4 + 2/4.7 + 2/7.10 + .....+ 2/196.199
Bài 1 Tính giá trị biểu thức :
A = 3/1.4 + 5/4.9 + 7/9.16 + 9/16.25 + 11/25.36
B = 3/1.4 + 3/4.7 + ... + 3/100.103
C = 3/1.4 + 6/4.10 + 9/10.19 + 12/19.31 + 15/31.46 + 18/46.64
Bài 2 Chứng minh rằng :
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50 = 1/26 + 1/27 + 1/28 + ... + 1/50
Bài 1:
\(A=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+\dfrac{9}{16.25}+\dfrac{11}{25.36}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{25}+\dfrac{1}{25}-\dfrac{1}{36}\)
\(=1-\dfrac{1}{36}=\dfrac{35}{36}\)
\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(=1-\dfrac{1}{103}=\dfrac{102}{103}\)
\(C=\dfrac{3}{1.4}+\dfrac{6}{4.10}+\dfrac{9}{10.19}+\dfrac{12}{19.31}+\dfrac{15}{31.46}+\dfrac{18}{46.64}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{46}+\dfrac{1}{46}-\dfrac{1}{64}\)
\(=1-\dfrac{1}{64}=\dfrac{63}{64}\)
Bài 2:
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}\left(đpcm\right)\)
Bài 1 : a) -5/11.4/7+-5/11.3/7-8/11
b) (2/9:5/3+1/3:5/3)^2-(1/3-5/8)
c) 14-|-3/4|-(1/3-5/8)
Bài 2:
A= 2/1.4+2/4.7+2/7.9+...+2/196.199
1)
a)
\(\dfrac{-5}{11}\cdot\dfrac{4}{7}+\dfrac{-5}{11}\cdot\dfrac{3}{7}-\dfrac{8}{11}\\ =\dfrac{-5}{11}\cdot\left(\dfrac{4}{7}+\dfrac{3}{7}\right)-\dfrac{8}{11}\\ =\dfrac{-5}{11}\cdot1-\dfrac{8}{11}\\ =\dfrac{-5}{11}-\dfrac{8}{11}\\ =\dfrac{-5}{11}+\dfrac{-8}{11}\\ =\dfrac{-13}{11}\)
b)
\(\left(\dfrac{2}{9}:\dfrac{5}{3}+\dfrac{1}{3}:\dfrac{5}{3}\right)^2-\left(\dfrac{1}{3}-\dfrac{5}{8}\right)\\ =\left(\dfrac{2}{9}\cdot\dfrac{3}{5}+\dfrac{1}{3}\cdot\dfrac{3}{5}\right)^2-\left(\dfrac{-7}{24}\right)\\ =\left[\dfrac{3}{5}\cdot\left(\dfrac{2}{9}+\dfrac{1}{3}\right)\right]^2+\dfrac{7}{24}\\ =\left[\dfrac{3}{5}\cdot\dfrac{5}{9}\right]^2+\dfrac{7}{24}\\ =\left[\dfrac{1}{3}\right]^2+\dfrac{7}{24}\\ =\dfrac{1}{9}+\dfrac{7}{24}\\ =\dfrac{29}{72}\)
c) \(14-\left|\dfrac{-3}{4}\right|-\left(\dfrac{1}{3}-\dfrac{5}{8}\right)\\ =14-\dfrac{3}{4}-\left(\dfrac{-7}{24}\right)\\ =14+\dfrac{-3}{4}+\dfrac{7}{24}\\ =13\dfrac{13}{24}\)
tính giá trị các biểu thức sau:
a) S=1/2.3 + 1/ 2.4 +...+ 1/99.100
b) P=3/1.4 + 3/4.7 +...+ 3/91.94
Tách ra là xong nhé!!
S=1/2-1/100=49/100
P=1-1/94=93/94
k mình đúng với!!!!
Tính giá trị biểu thức:
B= \(1-\dfrac{3}{1.4}-\dfrac{3}{4.7}-\dfrac{3}{7.10}-...-\dfrac{3}{2020.2023}\)
\(B=1-\dfrac{3}{1\cdot4}-\dfrac{3}{4\cdot7}-...-\dfrac{3}{2020\cdot2023}\\ =1-\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{2020\cdot2023}\right)\\ =1-\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2020}-\dfrac{1}{2023}\right)\\ =1-\left(1-\dfrac{1}{2023}\right)\\ =1-\dfrac{2022}{2023}=\dfrac{1}{2023}\)
`B=1-3/(1.4)-3/(4.7)-3/(7.10)-....-3/(2020.2023)`
`B=1-(3/(1.4)+3/(4.7)+.....+3/(2020.2023))`
`B=1-(1-1/4+1/4-1/7+.....+1/2020-1/2023)`
`B=1-(1-1/2023)`
`B=1-1+1/2023=1/2023`
Tính giá trị của biểu thức sau:
A=11 3/13-(2 4/7+5 3/13)
B=-1/13.15/17+-1/13.2/17+4 5/9
C=(-5/24+0.75+7/12)÷(-2 1/8)
D= 3./1.4+ 3/4.7+3/7.10+...+3/40.43
Mong mọi người hiểu và làm được cho mình
Bài 3 Tính giá trị biểu thức\(\left(1_{ },5\right).\frac{-2}{3}+\left(2,5-\frac{3}{4}\right):1\frac{3}{4}\)
B=\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)
\(B=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(B=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(B=\frac{1}{3}.\frac{102}{103}\)
\(B=\frac{34}{103}\)
Bài 3: đổi ra phân số rồi tính, đổi:\(1,5=\frac{15}{10};2,5=\frac{25}{10};1\frac{3}{4}=\frac{7}{12}\)(cái này ko giải dùm, đổi ra như thek rồi tính nha)
\(B=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)\)
\(=\frac{1}{3}.\frac{102}{103}\)
\(=\frac{1}{1}.\frac{34}{103}=\frac{34}{103}\)
Thằng an mất dạy :)))
#Lê_Linh
Tính giá trị của biểu thức
A=3/1.4+3/4.7+3/7.10+...+3/40.43+3/2015.2016
A = \(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{40\cdot43}+\dfrac{3}{2015\cdot2016}\)
A = \(\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{40\cdot43}\right)+\left(\dfrac{1}{2015\cdot2016}\cdot3\right)\)
A = \(\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}\right)+\left(\left(\dfrac{1}{2015}-\dfrac{1}{2016}\right)\cdot3\right)\)
A = \(\left(1-\dfrac{1}{43}\right)+\dfrac{1}{1354080}=\dfrac{42}{43}+\dfrac{1}{1354080}=\dfrac{56871403}{58225440}\)
A=3/1.4+3/4.7+3/7.10+....+3/40.43+3/2015.2018
Tính giá trị của biểu thức
Giải:
\(A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{2015.2018}\)
\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{2015}-\dfrac{1}{2018}\)
\(\Leftrightarrow A=\dfrac{1}{1}-\dfrac{1}{43}+\dfrac{1}{2015}-\dfrac{1}{2018}\)
\(\Leftrightarrow A=\dfrac{42}{43}+\dfrac{1}{2015}-\dfrac{1}{2018}\)
\(\Leftrightarrow A=0,977240464-\dfrac{1}{2018}\)
\(\Leftrightarrow A=0,9767449238\approx0,98\)
Vậy ...