Những câu hỏi liên quan
KY
Xem chi tiết
NG
19 tháng 4 2017 lúc 20:54

1/31 đến 1/90 có 60 số hạng mà 1/31 là lớn nhất nên ta lấy 1/31*60=60/31 < 2

Bình luận (0)
 
17 tháng 4 2017 lúc 21:57

dấu \(< \)nhìn là biết 

ai thấy tớ đúng k nha

cảm ơn mọi người

Bình luận (0)
NK
18 tháng 4 2017 lúc 12:40

Dấu < nhìn thôi cũng biết

Bình luận (0)
SB
Xem chi tiết
LC
20 tháng 8 2015 lúc 16:53

Đặt  \(A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=30.\frac{1}{60}=\frac{1}{2}\)

       \(B=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{90}>\frac{1}{90}+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}=30.\frac{1}{90}=\frac{1}{3}\)

\(=>Q=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{90}=A+B>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

Vậy \(Q>\frac{5}{6}\)

Bình luận (0)
NM
Xem chi tiết
SG
5 tháng 8 2016 lúc 21:43

ớ chết, mk nhầm, lm lại nha

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50}.10\)

\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{4}{5}\)

=> \(S< \frac{4}{5}\)

Bình luận (0)
SG
5 tháng 8 2016 lúc 21:37

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(S< 30.\frac{1}{60}\)

\(S< \frac{1}{2}< \frac{4}{5}\)

\(S< \frac{4}{5}\)

Bình luận (0)
EC
6 tháng 8 2016 lúc 7:37

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(\Rightarrow S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50}.10\)

\(S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{4}{5}\)

\(V\text{ậy}:S< \frac{4}{5}\)

Bình luận (0)
PM
Xem chi tiết
NT
10 tháng 7 2015 lúc 17:39

Ta có:\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{89}+\frac{1}{90}=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{90}\right)\)

\(>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\right)\)

           có 30 số hạng 1/60                          có 30 số hạng 1/90

\(=\frac{30}{60}+\frac{30}{90}=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

=> \(\frac{1}{31}+...+\frac{1}{90}>\frac{5}{6}\)

đây là cách ngắn gọn chỉ dành cho hs khá giỏi nha

Bình luận (0)
PM
10 tháng 7 2015 lúc 17:15

các bạn làm đi mình **** cho

Bình luận (0)
PM
Xem chi tiết
UO
24 tháng 12 2016 lúc 22:34

con điên

chịu

Bình luận (0)
UO
24 tháng 12 2016 lúc 22:38

các bn cứ bấm vào chữ con điên rồi sẽ biết mik chửi ai

Bình luận (0)
TF
15 tháng 7 2017 lúc 7:42

mk biết bn chửi ai rồi

Bình luận (0)
DD
Xem chi tiết
NC
28 tháng 2 2019 lúc 13:02

Câu hỏi của Quỳnh Anh - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo câu 1 2 cách 2 bạn hướng dẫn nhé!

Bình luận (0)
TT
Xem chi tiết
PH
2 tháng 8 2018 lúc 19:33

\(30A=\frac{30^{32}+30}{30^{32}+1}=\frac{30^{32}+1+29}{30^{32}+1}=1+\frac{29}{30^{32}+1}\)

\(30B=\frac{30^{33}+30}{30^{33}+1}=\frac{30^{33}+1+29}{30^{33}+1}=1+\frac{29}{30^{33}+1}\)

Vì \(\frac{29}{30^{32}+1}>\frac{29}{30^{33}+1}\) nên \(1+\frac{29}{30^{32}+1}>1+\frac{29}{30^{33}+1}\Rightarrow30A>30B\Rightarrow A>B\)

Vậy \(A>B.\)

Chúc bạn học tốt.

Bình luận (0)
HH
Xem chi tiết
SG
30 tháng 10 2016 lúc 21:43

 

\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)

\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{49}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)

\(\frac{1}{40}.10+\frac{1}{50}.10+\frac{1}{60}.10< S< \frac{1}{30}.10+\frac{1}{40}.10+\frac{1}{50.10}\)

\(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}< S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}\)

\(\frac{1}{4}+\frac{1}{5}+\frac{3}{20}< \frac{1}{4}+\frac{1}{5}+\frac{1}{6}< S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}< \frac{1}{3}+\frac{4}{15}+\frac{1}{5}\)

\(\frac{3}{5}< S< \frac{4}{5}\left(đpcm\right)\)

 

Bình luận (0)
LX
Xem chi tiết
LP
9 tháng 4 2016 lúc 9:52

Từ đề ài ta có, M=1/31+1/32+1/33+.......+1/60, ta sẽ phân tích M thành phân số lớn hơn.

Vậy phân số lớn hơn M là 1/30+1/31+1/32+......+1/60

Có: (1/30+1/30+1/30+....+1/30)+(1/40+1/40+....+1/40)+(1/50+1/50+....+1/50)=1/3+1/4+1/5=47/60

 Vì 47/60 lớn hơn M mà bé hơn 4/5 nên M bé hơn 4/5.(tính chất bắc cầu)

Bình luận (0)