Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
LA
Xem chi tiết
PQ
25 tháng 4 2018 lúc 12:55

Ta có : 

\(A=100\left(1+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{9899}{9900}\right)\)

\(A=100\left(1+\frac{6-1}{6}+\frac{12-1}{12}+\frac{20-1}{20}+...+\frac{9900-1}{9900}\right)\)

\(A=100\left(1+\frac{6}{6}-\frac{1}{6}+\frac{12}{12}-\frac{1}{12}+\frac{20}{20}-\frac{1}{20}+...+\frac{9900}{9900}-\frac{1}{9900}\right)\)

\(A=100\left(1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\right)\)

\(\frac{A}{100}=1+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{9900}\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(\frac{A}{100}=\left(1+1+1+1+...+1\right)-\left(\frac{1}{2}-\frac{1}{100}\right)\)

Do từ \(2\) đến \(99\) có \(99-2+1=98\) số nên có \(98\) số \(1\) suy ra : 

\(\frac{A}{100}=98-\left(\frac{1}{2}-\frac{1}{100}\right)\)

\(\frac{A}{100}=98-\frac{49}{100}\)

\(\frac{A}{100}=\frac{9751}{100}\)

\(A=\frac{9751}{100}.100\)

\(A=9751\)

Vậy \(A=9751\)

Chúc bạn học tốt ~ 

Bình luận (0)
ND
Xem chi tiết
DY
Xem chi tiết
DY
2 tháng 9 2020 lúc 10:42

Mấy câu như này tách ra kiểu gì?

Bình luận (0)
 Khách vãng lai đã xóa
H24
2 tháng 9 2020 lúc 11:59

\(\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+...+\frac{5}{9900}=\frac{5}{3.4}+\frac{5}{4.5}+\frac{5}{5.6}+...+\frac{5}{99.100}\)

\(5\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(5\left(\frac{1}{3}-\frac{1}{100}\right)=\frac{97}{60}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
2 tháng 9 2020 lúc 12:39

\(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+...+\frac{71}{72}+\frac{89}{90}=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)

\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)

\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)=8-\frac{2}{5}=\frac{38}{5}\)

Bình luận (0)
 Khách vãng lai đã xóa
LQ
Xem chi tiết
PT
Xem chi tiết
NG
28 tháng 5 2018 lúc 19:45

A = 5 x (\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{9900}\))

A = 5 x ( \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\))

A = 5x( \(\frac{1}{2}-\frac{1}{100}\))

A = \(\frac{49}{20}\)

Bình luận (0)
TP
28 tháng 5 2018 lúc 19:39

Gọi tổng trên là A

\(\Leftrightarrow A=5\times\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)

(Tính dãy trong ngoặc) Gọi dãy trong ngoặc là B

\(\Leftrightarrow2B=\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\)

\(\Leftrightarrow2B-B=\left(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\right)-\left(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)

\(\Leftrightarrow B=\frac{1}{3}-\frac{1}{9900}+0+...+0\)

\(\Leftrightarrow B=\frac{3299}{9900}\)

\(\Rightarrow A=5\times\frac{3299}{9900}\)

\(\Rightarrow A=1,6661616...\approx1,7\)

Bình luận (0)
VH
28 tháng 5 2018 lúc 19:43

=5/2 x 3 + 5/3x4 + 5/4 x5 + 5/5 x6 + ....... + 5/99 x 100

= 5 x ( 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 +...........+ 1/99 - 1/100)

= 5 x ( 1/2 - 1/100)

= 5 x 49/100

= 49/20

Bình luận (0)
HH
Xem chi tiết
ND
28 tháng 7 2017 lúc 16:49

tự làm

Bình luận (0)
MT
Xem chi tiết
TH
Xem chi tiết

=1/1.2+5/2.3+11/3.4+19/4.5+29/5.6+41/6.7

=1-1/2+5/2-5/3+11/3-11/4+19/4-19/5+29/5-29/6+41/6-41/7

=3+2+2+2+2-41/7

=77/7-41/7

=36/7

k nhé

Bình luận (0)
TQ
9 tháng 9 2019 lúc 21:27

\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}\)

\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{12}\right)+\left(1-\frac{1}{20}\right)+\left(1-\frac{1}{30}\right)+\left(1-\frac{1}{42}\right)\)

\(=\left(1+1+1+1+1+1\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)

\(=6-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\right)\)

\(=6-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(=6-\left(1-\frac{1}{7}\right)=6-\frac{6}{7}=\frac{36}{7}\)

Bình luận (0)
DH
Xem chi tiết
DH
8 tháng 2 2016 lúc 7:54

A= 5.(1/2 + 1/6+1/12+1/20+...+1/9506+1/9702+1/9900)

 = 5. (1/1.2 + 1/2.3+1/3.4+1/4.5+...1/97.98+1/98.99+1/99.100)

= 5 .(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/97-1/98+1/98-1/99+1/99-1/100)

= 5.(1-1/100)=5. 99/100=99/20

Bình luận (0)
NN
8 tháng 2 2016 lúc 7:52

25

5144 nhe

Bình luận (0)