Chứng minh rằng: 3/1^2.2^2 + 5/2^2.3^2 + 7/3^2.4^2 + ... + 4031/2015^2.2016^2 < 1
CHỨNG MINH RẰNG
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+......+\frac{4031}{2015^2.2016^2}< 1\)
c/minh: A=3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+.......+4031/2015^2.2016^2<1
A =2^2-1^2/1^2.2^2 + 3^2-2^2/2^2.3^2 + ..... + 2016^2-2015^2/2015^2.2016^2
= 1/1^2-1/2^2+1/2^2-1/3^2+.....+1/2015^2-1/2016^2
= 1-1/2016^2 < 1
=> ĐPCM
k mk nha
Mk hơi bối rối,bn dùng cái gõ phương trình trên thanh công cụ được ko.
(2x)^2 - 25=0
-> (2x)^2 = 0+ 25 = 25
-> (2x) = 5
Vậy x = 5:2 = 2.5
chứng minh \(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{4031}{2015^2.2016^2}< 1\)
CHỨNG MINH RẰNG : \(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{4031}{2015^2.2016^2}< 1\)
Câu 1
Chứng minh rằng: A=\(\frac{3}{1^2.2^2}\) + \(\frac{5}{2^2.3^2}\) + \(\frac{7}{3^2.4^2}\) + ... + \(\frac{4031}{2015^2.2016^2}\) < 1
Câu 2
Cho biểu thức P = \(\frac{x}{x+y}\) + \(\frac{y}{y+z}\) + \(\frac{z}{z+x}\) với x, y, z là các số nguyên dương. Chứng minh 1 < P < 2.
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+....+\frac{4031}{2015^2.2016^2}=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-.....-\frac{1}{2016^2}=1-\frac{1}{2016^2}\)
\(\frac{1}{2016^2}>0\Rightarrow A< 1\left(ĐPCM\right)\)
bạn chờ xíu mk lm câu sau nha
\(Taco:\)
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x};x,y,z\inℕ^∗\)
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)
\(\Rightarrow P>1\)
Giả sử: \(x>y>z\)
\(\Rightarrow\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+y}{y+z}=1;\frac{x}{x+y}< 1\Rightarrow P< 1+1=2\Rightarrow1< P< 2\left(ĐPCM\right)\)
chứng minh rằng 3/1^2.2+5/2^2.3^2+7/3^2.4^2+...+2013/1006^2.1007^2<1
Chứng minh rằng :
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}< 1\)
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)
\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{19}{81.100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{81}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}< 1\left(dpcm\right)\)
Chứng minh rằng :
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}< 1\)
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}\)
\(=\dfrac{3}{1.4}+\dfrac{5}{4.9}+\dfrac{7}{9.16}+...+\dfrac{19}{81.100}\)\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{16}+...+\dfrac{1}{81}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}< 1\)
chứng minh rằng
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{19}{9^2.10^2}< 1\)