so sánh
P=1/1^2 + 1/2^2 +1/3^2 +...+1/2013^2 +1/2014^2 và Q=1+3/4
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
So sánh:
P=1/1^2+1/2^2=1/3^2+1/4^2+...+1/2013^2+1/2014^2 và Q=1/3/4
So sánh 1/2^2 + 1/3^2 + 1/4^2 + ...... + 1/2013^2 và 2014/2013
ta có :\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(............\)
\(\frac{1}{2013^2}< \frac{1}{2012.2013}\)
cộng vế với vế ta được :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< 1-\frac{1}{2013}=\frac{2012}{2013}< \frac{2014}{2013}\)
So sánh \(P=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2013^2}+\frac{1}{2014^2}\)và \(Q=1\frac{3}{4}\)
P=1/1^2+1/2^2+1/3^2+1/4^2+.......+1/2013^2+1/2014^2
Q=1+3/4
So sanh P va Q
so sánh 1/2^2+1/3^2+1/4^2+...+1/2013^2 và 2014/2013
Giúp mik với
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
............
\(\frac{1}{2013^2}< \frac{1}{2012.2013}=\frac{1}{2012}-\frac{1}{2013}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}=1-\frac{1}{2013}< 1\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< 1\)
Mà \(\frac{2014}{2013}>1\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< \frac{2014}{2013}\)
So sánh: \(P=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}\)và \(Q=1\frac{3}{4}\)
Hãy so sánh M và N biết:
M = 1 2014 + 2 2013 + 3 2012 + ... + 2014 1
N = 1 + (1 + 2) + (1 + 2 + 3) + ... + (1 + 2 + 3 + ... + 2014)
\(\frac{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2013}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2013}}{\frac{2012}{1}+2+\frac{2012}{2}+1+\frac{2011}{3}+1+...+\frac{1}{2013}+1-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{\frac{2014}{1}+\frac{2014}{2}+...+\frac{2014}{2013}-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{2014\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-1\right)}\)
=\(\frac{1}{2014}\)
1) 1/2 + 1/3 + 1/4 + ... + 1/2013 + 1/2014
2) 2014 + 2013/2 + 2012/3 + 2011/4 + ... + 2/2013 + 1/2014