Những câu hỏi liên quan
ND
Xem chi tiết
AH
20 tháng 10 2023 lúc 15:33

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.

Bình luận (0)
NC
Xem chi tiết
TL
4 tháng 9 2016 lúc 16:02

thứ lỗi cho mk , mk không biết làm ; bài này khó quá

Bình luận (0)
TT
4 tháng 9 2016 lúc 16:09

chuẩn k chỉnh

Bình luận (0)
AL
4 tháng 9 2016 lúc 18:14

mik không bieetsn hà banj

Bình luận (0)
QN
Xem chi tiết
H24
25 tháng 11 2018 lúc 22:50

\(\hept{\begin{cases}\left|x^2+y^2+z^2-1\right|=0\\\left(3y-4z\right)^4\ge0\\\left(3x-2y\right)^2\ge0\end{cases}}\Rightarrow\left|x^2+y^2+z^2-1\right|+\left(3y-4z\right)^4+\left(3x-2y\right)^2\ge0\)

dấu = xảy ra khi \(\hept{\begin{cases}\left|x^2+y^2+z^2-1\right|=0\\\left(3y-4z\right)^4=0\\\left(3x-2y\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2+y^2+z^2=1\\3y=4z\\3x-2y=0\end{cases}}\Rightarrow\hept{\begin{cases}x^2+y^2+z^2=1\\y=\frac{4z}{3}\\x=\frac{2y}{3}\end{cases}}\)

Vậy ...

p/s bài này chắc chỉ có dạng chung thôi bn :)

Bình luận (0)
NA
Xem chi tiết
PM
24 tháng 11 2015 lúc 21:32

tick đi mình giải cho bạn :)

Bình luận (0)
SS
24 tháng 11 2015 lúc 21:47

3^x lae => y chẵn,,thay y=2k

Bình luận (0)
PM
25 tháng 11 2015 lúc 6:27

đoạn 3x=1-27k3-27k2-9k-1
3x=-9k(3k2+3k+1)
Nếu k=-1=> 3k2+3k+1=1=> x=2 (TM)
Nếu k< hoặc = -2 thì -k(3k2+3k+1) là luỹ thừa của 3
Mà 3k2+3k+1 không chia hết cho 3 => vô nghiệm
KL: (x;y)=(0;1);(2;-2)

Bình luận (0)
SC
Xem chi tiết
CT
18 tháng 3 2019 lúc 22:14

a,b, dễ rồi

c, em đặt giả thiết nếu x>hoặc = y lớn hơn hoặc bằng z

sau đó làm bt

d, phân tích

e,phân tiachs dùng pp ghép nhóm thử xem

Bình luận (0)
LC
18 tháng 3 2019 lúc 23:35

chị làm đi ạ

Bình luận (0)
TH
Xem chi tiết
TT
6 tháng 12 2016 lúc 7:19

=>\(\hept{\begin{cases}2x-3=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=0\end{cases}}\)

Bình luận (0)
NA
Xem chi tiết
DG
Xem chi tiết
AN
28 tháng 9 2018 lúc 13:50

\(xy+yz+zx=xyz\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\) thì

\(\hept{\begin{cases}a+b+c=1\\P=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{1}{16}\end{cases}}\)

Ta co:

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{64}+\frac{1+c}{64}\ge\frac{3a}{16}\)

\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{3a}{16}-\frac{b}{64}-\frac{c}{64}-\frac{1}{32}\)

Từ đây ta co:

\(P\ge\left(a+b+c\right)\left(\frac{3}{16}-\frac{1}{64}-\frac{1}{64}\right)-\frac{3}{32}=\frac{1}{16}\)

Bình luận (0)
DH
Xem chi tiết