Những câu hỏi liên quan
TG
Xem chi tiết
TA
Xem chi tiết
TN
25 tháng 10 2016 lúc 19:39

\(\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)

\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc\ge0\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\left(a+b+c\right)-8+abc\)

\(\Leftrightarrow2\left(ab+bc+ca\right)\ge12-8+abc\ge4\)

\(\Rightarrow2\left(ab+bc+ca\right)\ge4\)

\(\Rightarrow-2\left(ab+bc+ca\right)\le-4\)

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)

\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\le9-4=5\)(Đpcm)

Dấu = khi \(\hept{\begin{cases}\left(2-a\right)\left(2-b\right)\left(2-c\right)=0\\abc=0\\a+b+c=3\end{cases}}\)

\(\Rightarrow\left(a;b;c\right)=\left(2;1;0\right)\)và hoán vị.

Bình luận (0)
NM
18 tháng 5 2018 lúc 19:52

a = 2 ( t/m )

b = 1 ( t/m )

c = 0 ( t/m )

vậy \(a^2+b^2+c^2\le5\)

Bình luận (0)
VD
Xem chi tiết
TH
3 tháng 4 2022 lúc 21:31

Bài 3:

\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)

\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)

\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)

 

Bình luận (4)
TH
3 tháng 4 2022 lúc 21:08

-Tham khảo:

undefined

Bình luận (0)
TH
3 tháng 4 2022 lúc 21:12

-Tham khảo:

undefined

Bình luận (0)
HK
Xem chi tiết
AO
Xem chi tiết
LS
Xem chi tiết
LA
Xem chi tiết
HT
6 tháng 5 2018 lúc 10:54

từ giả thuyết suy ra : abc >0

có 2>a,c,b ->> (2-a)(2-b)(2-c)\(\ge\)0

\(\Leftrightarrow\)8+2(ab+ac+bc) -4(a+b+c)-abc \(\ge\)0

\(\Leftrightarrow\)8+2(ab+ac+bc)-4.3-abc \(\ge\)0

\(\Leftrightarrow\)2(ab+ac+bc) \(\ge\)4+abc \(\ge\)4 (1)

Cộng a2+b2+cvào (1)

2(ab+ac+bc)+a2+b2+c2\(\ge\)4+a2+b2+c2

(a+b+c)2-4\(\ge\)a2+b2+c2

thay a+b+c=3 vào

9-4\(\ge\)a2+b2+c2

\(\ge\)a2+b2+c2

a2+b2+c\(\le\)5

Bình luận (0)
NV
6 tháng 5 2018 lúc 10:44

cauhc lop may

Bình luận (0)
AO
Xem chi tiết
AO
Xem chi tiết
LD
23 tháng 3 2021 lúc 20:44

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel và bất đẳng thức AM-GM  ta có :

\(\frac{a^5}{bc}+\frac{b^5}{ca}+\frac{c^5}{ab}=\frac{a^6}{abc}+\frac{b^6}{abc}+\frac{c^6}{abc}\ge\frac{\left(a^3+b^3+c^3\right)^2}{3abc}=\frac{\left(a^3+b^3+c^3\right)\left(a^3+b^3+c^3\right)}{3abc}\ge\frac{3abc\left(a^3+b^3+c^3\right)}{3abc}=a^3+b^3+c^3\)( đpcm )

Đẳng thức xảy ra <=> a=b=c

Bình luận (0)
 Khách vãng lai đã xóa