P=1/1^2+1/2^2+1/3^2+1/4^2+.......+1/2013^2+1/2014^2
Q=1+3/4
So sanh P va Q
cho A=(1/2^2-1) (1/3^2-1) (1/4^2-1) ... (1/2013^2-1) (1/2014^2-1) và B=-1/2 .
so sanh A va B
cho A=1+1/2+1/3+1/4+.......+1/4026 va B=1+1/3+1/5+........+1/4025
so sanh A/B va 1/2013/2014
Cho \(A=\left(\frac{1}{^{2^2}}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)......\left(\frac{1}{2013^2}-1\right).\left(\frac{1}{2014^2}-1\right)va\)\(B=-\frac{1}{2}.\)Hay so sanh A va B
Cho A = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)....\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\) va B = \(\frac{-1}{2}\), So sanh A va B
A = \(-\frac{1.3}{2.2}.-\frac{2.4}{3.3}.\cdot\cdot\cdot-\frac{2013.2015}{2014.2014}=-\frac{\left(1.2.3...2013\right).\left(3.4.5....2015\right)}{\left(2.3....2014\right).\left(2.3....2014\right)}=-\frac{2.2015}{2014}=-\frac{4030}{2014}
A=(1/22-1)(1/32-1)(1/42-1)...(1/20132-1)(1/20142) ; B=-1/2 . So sanh A va B
\(\frac{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2013}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2013}}{\frac{2012}{1}+2+\frac{2012}{2}+1+\frac{2011}{3}+1+...+\frac{1}{2013}+1-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{\frac{2014}{1}+\frac{2014}{2}+...+\frac{2014}{2013}-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{2014\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-1\right)}\)
=\(\frac{1}{2014}\)
Cho A bang 1+1/2+1/2^2+1/2^3+1/2^4+......+1/2^2013.Hay so sanh A va 2
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\)
=>\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)
=>\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\right)\)
=>\(A=2-\frac{1}{2^{2013}}< 2\)
Vậy A<2
1) 1/2 + 1/3 + 1/4 + ... + 1/2013 + 1/2014
2) 2014 + 2013/2 + 2012/3 + 2011/4 + ... + 2/2013 + 1/2014
Tính
\(S=\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{2013}\left(1+2+3+...+2013\right)+\dfrac{1}{2014}\left(1+2+3+...+2014\right)\)