tìm x:
x/2013 +x/2014 + x/2015 + x/2016 = x/2017
a, x+1/2013+x+1/2014+x+1/2015=x+1/2016+x+1/2017
b,x-1/2013+x-2/2014+x-3/2015=x-4/2016-2
x+1/2013+x+1/2014+x+1/2015=x+1/2016+x+1/2017
Ta có : \(\frac{x+1}{2013}+\frac{x+1}{2014}+\frac{x+1}{2015}=\frac{x+1}{2016}+\frac{x+1}{2017}\)
\(\Rightarrow\) \(\frac{x+1}{2013}+\frac{x+1}{2014}+\frac{x+1}{2015}-\frac{x+1}{2016}-\frac{x+1}{2017}=0\)
\(\Rightarrow\) \(\left(x+1\right)\left(\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
Vì \(\left(\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)\ne0\)
Nên : x + 1 = 0
Vậy x = -1
x-1/2012+x-2/2013 +x-3/2014=x-4/2015+x-5/2016+x-6/2017
\(\dfrac{x-1}{2012}+\dfrac{x-2}{2013}+\dfrac{x-3}{2014}=\dfrac{x-4}{2015}+\dfrac{x-5}{2016}+\dfrac{x-6}{2017}\)
\(\Leftrightarrow\left(\dfrac{x-1}{2012}+1\right)+\left(\dfrac{x-2}{2013}+1\right)+\left(\dfrac{x-3}{2014}+1\right)=\left(\dfrac{x-4}{2015}+1\right)+\left(\dfrac{x-5}{2016}+1\right)+\left(\dfrac{x-6}{2017}+1\right)\)
\(\Leftrightarrow\dfrac{x+2011}{2012}+\dfrac{x+2011}{2013}+\dfrac{x+2011}{2014}-\dfrac{x+2011}{2015}-\dfrac{x+2011}{2016}-\dfrac{x+2011}{2017}=0\)
\(\Leftrightarrow\left(x+2011\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\)
\(\Leftrightarrow x=-2011\)( do \(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}-\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\ne0\))
x+5/2012+x+4/2013+x+3/2014=x+2/2015+x+1/2016+x/2017
Ta có : \(\frac{x+5}{2012}+\frac{x+4}{2013}+\frac{x+3}{2014}=\frac{x+2}{2015}+\frac{x+1}{2016}+\frac{x}{2017}\)
\(\Rightarrow\frac{x+5}{2012}+1+\frac{x+4}{2013}+1+\frac{x+3}{2014}=\frac{x+2}{2015}+1+\frac{x+1}{2016}+1+\frac{x}{2017}+1\)
\(\Leftrightarrow\frac{x+2017}{2012}+\frac{x+2017}{2013}+\frac{x+2017}{2014}=\frac{x+2017}{2015}+\frac{x+2017}{2016}+\frac{x+2017}{2017}\)
\(\Leftrightarrow\frac{x+2017}{2012}+\frac{x+2017}{2013}+\frac{x+2017}{2014}-\frac{x+2017}{2015}-\frac{x+2017}{2016}-\frac{x+2017}{2017}=0\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)
\(\text{Mà
}\)\(\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)\ne0\)
\(\text{Nên : }\) x + 2017 = 0
=> x = -2017
tìm giá trị nhỏ nhất của biểu thức:
D=/x-2013/+/x-2014/+/x-2015/+/x-2016/
(/x-2013/ là giá trị tuyệt đối của x-2013 nhé ; /x-2014/,/x-2015/,/x-2016/ cũng vậy)
Tìm x :
6x(1-3x)+9x(2x-7)+171=0
tập hợp x:x+1/2015+x+2/2014=x+3/2013+x+4/2012
\(6x\left(1-3x\right)+9x\left(2x-7\right)+171=0\)
\(\Leftrightarrow6x-18x^2+18x^2-63x+171=0\)
\(\Leftrightarrow-57x=-171\)
\(\Leftrightarrow x=3\)
\(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x+3}{2013}+\frac{x+4}{2012}\)
\(\Leftrightarrow\left(\frac{x+1}{2015}+1\right)+\left(\frac{x+2}{2014}+1\right)-\left(\frac{x+3}{2013}+1\right)-\left(\frac{x+4}{2012}+1\right)=0\)
\(\Leftrightarrow\)\(\frac{x+2016}{2015}+\frac{x+2016}{2014}-\frac{x+2016}{2013}+\frac{x+2016}{2012}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
\(\Leftrightarrow x+2016=0\) ( vì \(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\ne0\) )
\(\Leftrightarrow x=-2016\)
Tìm x biết:
\(\frac{x+2014}{2015}+\frac{x+2015}{2016}=\frac{x+2016}{2017}+\frac{x+2017}{2018}\)
trừ mỗi vế cho 2 rồi tách -2 thành -1và -1
\(\frac{x+2014}{2015}+\frac{x+2015}{2016}=\frac{x+2016}{2017}+\frac{x+2017}{2018}\)
\(\Leftrightarrow\)\(\frac{x+2014}{2015}-1+\frac{x+2015}{2016}-1=\frac{x+2016}{2017}-1+\frac{x+2017}{2018}-1\)
\(\Leftrightarrow\)\(\frac{x-1}{2015}+\frac{x-1}{2016}=\frac{x-1}{2017}+\frac{x-1}{2018}\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\Leftrightarrow\)\(x-1=0\) ( do 1/2015 + 1/2016 - 1/2017 - 1/2018 # 0 )
\(\Leftrightarrow\) \(x=1\)
Tìm x
a, x+1/2 + x+2/3 + x+3/4 + x+4/5 + ....+ x+5/6=5
b, x+1/2017 + x+2/2016 + x+3/2015 = x+4/2014 + x+5/2013 + x+6/2012
Tìm các số nguyên x; y biết: x^2013+ x^2014+ 2009^2015= y^2015+ y^2016+ 2010^2016