Những câu hỏi liên quan
HN
Xem chi tiết
MN
Xem chi tiết
PD
Xem chi tiết
DH
6 tháng 3 2018 lúc 19:55

\(PT\Leftrightarrow\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-1}{1008}-2\right)+\left(\frac{x}{2017}-1\right)\)

\(\Leftrightarrow\frac{x-2017}{2014}+\frac{x-2017}{2015}=\frac{x-2017}{1008}+\frac{x-2017}{2017}\)

\(\Leftrightarrow\frac{x-2017}{2014}+\frac{x-2017}{2015}-\frac{x-2017}{1008}-\frac{x-2017}{2017}=0\)

\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{1008}-\frac{1}{2017}\right)=0\)

\(\Rightarrow x=2017\)

Bình luận (0)
BT
Xem chi tiết
CD
11 tháng 2 2020 lúc 16:28

\(\frac{x}{2012}+\frac{x-1}{2013}+\frac{x-2}{2014}-\frac{x-3}{2015}=\frac{x-4}{1008}\)

\(\Leftrightarrow\left(\frac{x}{2012}+1\right)+\left(\frac{x-1}{2013}+1\right)+\left(\frac{x-2}{2014}+1\right)-\left(\frac{x-3}{2015}+1\right)=\frac{x-4}{1008}+2\)

\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}=\frac{x-4+1008.2}{1008}\)

\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}=\frac{x+2012}{1008}\)

\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}-\frac{x+2012}{1008}=0\)

\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{1008}\right)=0\)

Vì \(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{1008}\ne0\)

\(\Rightarrow x+2012=0\)\(\Leftrightarrow x=-2012\)

Vậy \(x=-2012\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
11 tháng 2 2020 lúc 16:52

Chu Công Đứcbạn làm kết quả đúng nhưng trình bày sai rồi vế phải bạn cộng 2 nhưng vế trái bạn cộng 4???

Bình luận (0)
 Khách vãng lai đã xóa
BT
12 tháng 2 2020 lúc 21:36

Nhưng nếu vế phải +2 thì kết quả có thay đổi ko vậy ạ

Bình luận (0)
 Khách vãng lai đã xóa
HA
Xem chi tiết
HD
Xem chi tiết
PQ
22 tháng 3 2018 lúc 18:04

Ta có : 

\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+\frac{x-4}{2014}=2^2\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2017}-1\right)+\left(\frac{x-2}{2016}-1\right)+\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-4}{2014}-1\right)=2^2-4\)

\(\Leftrightarrow\)\(\frac{x-2018}{2017}+\frac{x-2018}{2016}+\frac{x-2018}{2015}+\frac{x-2018}{2014}=4-4\)

\(\Leftrightarrow\)\(\left(x-2018\right)\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\right)=0\)

Vì \(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\ne0\)

Nên \(x-2018=0\)

\(\Rightarrow\)\(x=2018\)

Vậy \(x=2018\)

Chúc bạn học tốt ~ 

Bình luận (0)
HH
22 tháng 3 2018 lúc 18:05

\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+\frac{x-4}{2014}=2^2\)

\(\left(\frac{x-1}{2017}-1\right)+\left(\frac{x-2}{2016}-1\right)+\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-4}{2014}-1\right)=0\)

\(\frac{x-2018}{2017}+\frac{x-2018}{2016}+\frac{x-2018}{2015}+\frac{x-2018}{2014}=0\)

\(\left(x-2018\right).(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014})=0\)

\(x-2018=0\left(Vì\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\ne0\right)\)

\(\Rightarrow x=2018\)

Bình luận (0)
MC
22 tháng 3 2018 lúc 18:10

\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+\frac{x-4}{2014}\)= 22

\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+\frac{x-4}{2014}=4\)

\(\frac{x-1}{2017}-1+\frac{x-2}{2016}-1+\frac{x-3}{2015}-1+\frac{x-4}{2015}-1=0\)

\(\frac{x-1}{2017}-\frac{2017}{2017}+\frac{x-2}{2016}-\frac{2016}{2016}+\frac{x-3}{2015}-\frac{2015}{2015}+\frac{x-4}{2014}-\frac{2014}{2014}=0\)

\(\frac{x-2018}{2017}+\frac{x-2018}{2016}+\frac{x-2018}{2015}+\frac{x-2018}{2014}=0\)

\(\left(x-2018\right)\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\right)=0\)

\(=>\orbr{\begin{cases}x-2018=0\\\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\right)=0\end{cases}}\)

Mà: \(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}>0\)

=> x - 2018 = 0 => x = 2018

Bình luận (0)
BQ
Xem chi tiết
PQ
9 tháng 4 2018 lúc 17:18

\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(100=2x+4\)

\(\Leftrightarrow\)\(2x=96\)

\(\Leftrightarrow\)\(48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

Bình luận (0)
PQ
9 tháng 4 2018 lúc 17:15

\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)

\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(49=x+1\)

\(\Leftrightarrow\)\(x=48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

Bình luận (0)
NH
9 tháng 4 2018 lúc 17:21

mình cũng đang bí

Bình luận (0)
DA
Xem chi tiết
DH
Xem chi tiết
DP
7 tháng 8 2017 lúc 5:56

Bài 1  :

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\left(\frac{2017}{1}+1\right)+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)+1}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\frac{2018}{1}+\frac{2018}{2}+\frac{2018}{3}+....+\frac{2018}{2017}+\frac{2018}{2018}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)}\)

\(=\frac{1}{2018}\)

Bình luận (0)
HT
8 tháng 8 2017 lúc 19:19

B=\(\frac{\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}}{\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}}\)

\(\)TA CÓ E=\(\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}\)

\(200E=\frac{200}{101.99}+\frac{200}{103.97}+..+\frac{200}{149.51}\)

\(200E=\frac{101+99}{101.99}+\frac{103+97}{103.97}+...+\frac{149+51}{149.51}\)

\(200E=\frac{1}{99}+\frac{1}{101}+\frac{1}{97}+\frac{1}{103}+...+\frac{1}{51}+\frac{1}{149}\)

\(200E=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\)

\(E=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right):200\)\(=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right).\frac{1}{200}\)

\(\Rightarrow B=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}\)/\(\left(\frac{1}{51}+\frac{1}{53}+..+\frac{1}{149}\right).\frac{1}{200}\)

\(\Rightarrow B=\frac{1}{\frac{1}{200}}=200\)

VẬY B=200

Bình luận (0)
HT
8 tháng 8 2017 lúc 19:21

Còn câu C thì bạn làm tương tự câu B thôi bạn nhé

Bình luận (0)