Những câu hỏi liên quan
TL
Xem chi tiết
TL
2 tháng 7 2015 lúc 18:53

đúng thật là hạng tiểu nhân

lên OLM là để làm toán giúp đỡ mọi người chứ ko phải là vì l i k e hiểu chứ?

còn làm toán chỉ vì l i k e thì cũng chẳng ra gì

chung ta làm toán là vì trước hết có lòng đam mê với môn học này đã

Bình luận (0)
SY
Xem chi tiết
DL
24 tháng 4 2017 lúc 21:45

Đặt (a;c)=q thì a=\(qa_1\) ;    c=\(qc_1\) (Vs (a1;c1=1)

\(\Rightarrow\) ab=cd \(\Leftrightarrow\)ba1=dc1
Dẫn đến \(d⋮a_1\)

Đặt   \(d=a_1d_1\) thay vào đc:
\(b=d_1c_1\)
Vậy \(a^n+b^n+c^n+d^n=q^2a^n_1+d^n_1c^n_1+q^nc^n_1+a^n_1d^n_1=\left(c^n_1+a^n_1\right)\left(d^n_1+q^n\right)\)
là hợp số (QED)   

Bình luận (0)
LK
Xem chi tiết
NL
Xem chi tiết
LK
19 tháng 11 2017 lúc 19:26

Câu a)

Giả sử k là ước của 2n+1 và n 

Ta có 

\(2n+1⋮k\)

\(n⋮k\)

Suy ra 

\(2n+1⋮k\)

\(2n⋮k\)

Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)

Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)

Mà 2 số trên là 2 số tự nhiên liên tiếp

Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau

Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)

Câu b)

Vì n lẻ nên

(n-1) là số chẵn

(n+1) là số chẵn

(n+2) là số chẵn

(n+5) là số chẵn

Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn

Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)

Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384

Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3

Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384

Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)

Câu c)

Đang thinking .........................................

Bình luận (0)
NL
20 tháng 11 2017 lúc 8:58

LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!

Bình luận (0)
NV
31 tháng 12 2018 lúc 8:43

Giả sử k là ước của 2n+1 và n 

Ta có 

2n+1⋮k

n⋮k

Suy ra 

2n+1⋮k

2n⋮k

Suy ra 2n+1là số lẻ (với mọi giá trị n thuộc N)

Suy ra 2nlà số chẵn (với mọi giá trị n thuộc N)

Mà 2 số trên là 2 số tự nhiên liên tiếp

Suy ra 2n+1và 2nlà 2 số nguyên tố cùng nhau

Vậy 2n+1và nlà 2 số nguyên tố cùng nhau (đpcm)

Câu b)

Vì n lẻ nên

(n-1) là số chẵn

(n+1) là số chẵn

(n+2) là số chẵn

(n+5) là số chẵn

Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn

Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)

Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384

Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3

Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384

Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)

Bình luận (0)
CC
Xem chi tiết
NL
Xem chi tiết
H24

a, gọi ƯCLN(n,2n-1) là d (d thuộc N)

Ta có: n chia hết cho d 

=> 2n chia hết cho d 

2n-1 chia hết cho d 

=> 2n-1-2n chia hết cho d

=> 1 chia hết cho d 

=> d thuộc ước của 1

=> d=1 

=> n bà 2n+1 nguyên tố cùng nhau

Bình luận (0)
CC
6 tháng 10 2018 lúc 16:44

Mình cũng có câu hỏi giống bạn nè

Bình luận (0)
NV
31 tháng 12 2018 lúc 8:46

a, gọi ƯCLN(n,2n-1) là d (d thuộc N)

Ta có: n chia hết cho d 

=> 2n chia hết cho d 

2n-1 chia hết cho d 

=> 2n-1-2n chia hết cho d

=> 1 chia hết cho d 

=> d thuộc ước của 1

=> d=1 

=> n bà 2n+1 nguyên tố cùng nhau

Bình luận (0)
VT
Xem chi tiết
H24
18 tháng 3 2017 lúc 20:07

Lớp 6 khó vậy sao?

ab=cd (*) 

a=b=c=d=1 => A=4=2.2 đúng

a=[c,d]

b=[c,d]

a,b,c,d, vai trò như nhau

g/s a=c; b=d 

A=2a^2+2b^2 =2.(a^2+b^2) => A hợp số

với a,b,c,d >1, và a,b,c,d khác nhau

ta có

đảm bảo (*)

( không tồn tại ab=cd khác nhau mà nguyên tố)

g/s a và c có ước lớn nhất p

ta có a=x.p và c=y.p ( do p lớn nhất => (x,y)=1)(**)

từ ab=cd=> x.p.b=y.p.d

từ (**)=> b=y.q và d=x.q

thay hết vào A

A=x^n .p^n+y^n.q^n^n+y^n.p^n+x^n.q^n =x^n(p^n+q^n)+y^n(p^n+q^n)=(x^n+y^n)(p^n+q^n)

A=B.C --> dpcm 

Bình luận (0)
ZZ
25 tháng 10 2018 lúc 20:46

ko hiểu

Bình luận (0)
ZZ
25 tháng 10 2018 lúc 21:03

gọi \(d'\)là \(ƯCLN\left(a,c\right)\)

\(\Rightarrow a=d'p;b=d'q;\left(m,n\right)=1;p,q\inℕ^∗\)

\(ab=cd\Rightarrow d'bp=d'dq\Rightarrow bp=dq\)

Mà     \(\left(p,q\right)=1\Rightarrow b⋮q\)

Đặt \(b=qk\)do đó \(d=pk\)\(k\inℕ^∗\)

Ta có:\(A=d'^n\cdot p^n+q^n\cdot k^n+d'^n\cdot q^n+p^n\cdot k^n\)

              \(=d'^n\cdot p^n+d'^n\cdot q^n+q^n\cdot k^n+p^n\cdot k^n\)

            \(=d'^n\left(p^n+q^n\right)+k^n\left(p^n+q^n\right)\)

             \(=\left(d'^n+k^n\right)\left(p^n+q^n\right)>0\)

\(\Rightarrowđpcm\)

Bình luận (0)
AT
Xem chi tiết
ND
8 tháng 2 2021 lúc 11:49

Ta có: \(ab=cd\Leftrightarrow\frac{a}{c}=\frac{d}{b}\)

Đặt \(\frac{a}{c}=\frac{d}{b}=k\left(k\inℕ\right)\)

Ta xét 2 TH sau:

Nếu k = 1 => \(\hept{\begin{cases}a=c\\b=d\end{cases}}\) \(\Rightarrow A=a^n+b^n+c^n+d^n=2\left(a^n+b^n\right)\) chia hết cho 2 và lớn hơn 2

=> A là hợp số

Nếu k khác 1 thì ta có: \(\hept{\begin{cases}a=ck\\d=bk\end{cases}\left(k\inℕ^∗\right)}\)

Thay vào: \(A=a^n+b^n+c^n+d^n=\left(ck\right)^n+b^n+c^n+\left(bk\right)^n\)

\(=c^n\left(k^n+1\right)+b^n\left(k^n+1\right)=\left(b^n+c^n\right)\left(k^n+1\right)\) là hợp số

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
H24
8 tháng 2 2021 lúc 11:52

=> đpcm ( ngại trình bày)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NB
23 tháng 9 2021 lúc 8:59

khó quá.chịu

Bình luận (0)
 Khách vãng lai đã xóa
SH
24 tháng 9 2021 lúc 14:08
Hdhxgxgxgxhxhxhxyxhxhchxyxhxhhchfufyfyfududufufufjfjfjfjfufifigivncjvkfuvjgugugjfugigkgkgkgofififickvigjgkfkgigkgigfkgkgkgkgigififjfjcjfffyrnfbumt sự iudydydhxfu⁹jfydutditsydtxskstsltdytdutstjsgjzutlxzudtusutzutzc . ủy yydgjsjgsjdjgsutstitidgkdlflufofkycgkdhkxhkdtisffffjlxiydtusutjgjynvjydlgdtusultstlusltualutsutslgskoykraoyrsoykfakfyalyfslhfosfhkssryayoozysrusrusu
Bình luận (0)
 Khách vãng lai đã xóa