Những câu hỏi liên quan
LD
Xem chi tiết
LT
31 tháng 3 2016 lúc 20:48

M>4/3haha

Bình luận (0)
LD
31 tháng 3 2016 lúc 20:50

phải giải thích cả bài làm nữa bạn

 

Bình luận (0)
KP
31 tháng 3 2016 lúc 22:01

cho mk hỏi nhé. đây là toán hay ngoại ngữ vậy?

Bình luận (0)
HL
Xem chi tiết
HL
Xem chi tiết
NQ
7 tháng 11 2015 lúc 21:56

\(\frac{1}{2}M=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(M-\frac{1}{2}M=\left(\frac{1}{2^2}-\frac{1}{2^2}\right)+\left(\frac{1}{2^3}+\frac{1}{2^3}\right)+...+\frac{1}{2}-\frac{1}{2^{100}}\)

\(M=\left(\frac{1}{2}-\frac{1}{2^{100}}\right).2=1-\frac{1}{2^{10000}}\)

Vậy M < 1 

Bình luận (0)
NT
Xem chi tiết
NM
25 tháng 4 2016 lúc 14:46

Ta có

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{11^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}=\frac{3-2}{2.3}+\frac{4-3}{3.4}\frac{5-4}{4.5}+...+\frac{12-11}{11.12}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}=\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)

Nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{5}{12}\)

Bình luận (0)
AC
25 tháng 4 2016 lúc 14:47

1/2^2+1/3^2+1/4^2+....+1/11^2<1/(2.3)+1/(3.4)+1/(4.5)+.....+1/(11.12)

                                                =1/2-13+1/3-1/4+1/5+.....+1/11-1/12

                                                =1/2-1/12=5/12

VẬY A<5/12

ks cho mình nhé

Bình luận (0)
MH
Xem chi tiết
BD
Xem chi tiết
KM
19 tháng 4 2017 lúc 19:57

\(M=\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-\frac{1}{2^{10}}+....+\frac{1}{2^{43}}-\frac{1}{2^{46}}+\frac{1}{2^{49}}-\frac{1}{2^{52}}\)

Nên \(2^3.M=4-\frac{1}{2}+\frac{1}{2^4}-\frac{1}{2^7}+.....+\frac{1}{2^{46}}-\frac{1}{2^{52}}\)

Suy ra \(2^3.M-M=4-\frac{1}{2^{52}}\)hay\(7.M=4-\frac{1}{2^{52}}\).

Khi đó \(M=\frac{4}{7}-\frac{1}{2^{52}.7}< 1\)

Vì \(\frac{9}{4}>1;M< 1\)nên \(\frac{9}{4}>M\)

Vậy \(\frac{9}{4}>M\)

Bình luận (0)
H24
19 tháng 4 2017 lúc 19:02

M<\(\frac{9}{4}\)

ok nha

Bình luận (0)
BD
19 tháng 4 2017 lúc 19:39

Giải ra giúp mình được không bạn

Bình luận (0)
SG
Xem chi tiết
LT
22 tháng 2 2016 lúc 12:33

lồnucche

Bình luận (0)
ND
22 tháng 2 2016 lúc 13:07

Ta có:

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(=\frac{1}{4}+\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Đặt \(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\)

\(B=\left(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}\right)+\left(\frac{1}{10^2}+\frac{1}{12^2}+\frac{1}{14^2}\right)\)

Giả sử tất cả các số hạng của B đều bằng \(\frac{1}{6^2}\)

\(\Rightarrow B=6.\frac{1}{6^2}=\frac{6}{36}=\frac{1}{6}<\frac{1}{4}\)

Do đó \(B<\frac{1}{4}\)

\(\Rightarrow A=\frac{1}{4}+B<\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)

Vậy \(A<\frac{1}{2}\)

 

Bình luận (0)
NU
Xem chi tiết
HN
18 tháng 3 2018 lúc 14:57

Ta có:

1 = \(\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+............+\frac{1}{10}\)(10 phân số \(\frac{1}{10}\))

Mà \(\frac{1}{2}>\frac{1}{10};\frac{2}{3}>\frac{1}{10};............;\frac{9}{10}>10\)

\(\Rightarrow M>1\)

Vậy M > 1

Bình luận (0)
H24
18 tháng 3 2018 lúc 14:49

Ta có:

1/2=0,5

2/3>0,6

<=>1/2+2/3>1,1>1

<=>1/2+2/3+3/4+...+9/10>1

Bình luận (0)
A3
18 tháng 3 2018 lúc 14:51

Vì 1 = \(\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)

\(\Rightarrow\)M > 1 vì \(\frac{1}{2}>\frac{1}{10};\frac{2}{3}>\frac{1}{10};...;\frac{9}{10}>\frac{1}{10}\)

\(\Rightarrow M>1\)

Bình luận (0)
NA
Xem chi tiết