Những câu hỏi liên quan
TA
Xem chi tiết
KF
15 tháng 5 2015 lúc 10:12

\(\frac{a}{n\left(n+a\right)}\)

=\(\frac{\left(n+a\right)-n}{n\left(n+a\right)}\)

=\(\frac{n+a}{n\left(n+a\right)}\)\(-\frac{n}{n\left(n+a\right)}\)

Rút gọn, ta được:

\(\frac{1}{n}\)\(-\frac{1}{n+a}\)

=>đpcm

 

A=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

A=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

A=\(\frac{1}{2}-\frac{1}{100}\)

A=\(\frac{50}{100}-\frac{1}{100}\)

A=\(\frac{49}{100}\)

Bình luận (0)
TH
Xem chi tiết
MT
13 tháng 1 2016 lúc 5:21

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

Bình luận (0)
BH
Xem chi tiết
NA
17 tháng 5 2021 lúc 18:30

1/2.3 + 1/3.4 + ....+ 1/ 99.100

= 1/2.(2+1) + 1/3.(3+1) + ... + 1/99.(99+1)

= 1/2 - 1/2+1  + 1/3 - 1/3+1  +....+ 1/99 - 1/99+1

= 1/2 - 1/99

= 49/100

Bình luận (0)
 Khách vãng lai đã xóa
BH
17 tháng 5 2021 lúc 19:31

teo ko bt

Bình luận (0)
 Khách vãng lai đã xóa
LY
Xem chi tiết
NU
Xem chi tiết
DN
Xem chi tiết
NH
12 tháng 8 2017 lúc 11:25

1) Ta có :

\(\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{n+1}{n\left(n+1\right)}-\dfrac{n}{n\left(n+1\right)}=\dfrac{1}{n\left(n+1\right)}\)

Vậy \(\dfrac{1}{n\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\rightarrowđpcm\)

2) \(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+............+\dfrac{1}{99.100}\)

\(\Leftrightarrow A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+......+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Leftrightarrow A=1-\dfrac{1}{100}\)

\(\Leftrightarrow A=\dfrac{99}{100}\)

Bình luận (1)
E3
Xem chi tiết
H24
22 tháng 5 2021 lúc 9:55

`1/(2.3)+1/(3.4)+......+1/(99/100)`
`=1/2-1/3+1/3-1/4+..........+1/99-1/100`
`=1/2-1/100`
`=49/100`

Bình luận (2)
EY
22 tháng 5 2021 lúc 9:59

Đặt A= \(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{99.100}\)

      A= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\)\(\dfrac{1}{99}-\dfrac{1}{100}\)

     A=\(\dfrac{1}{2}-\dfrac{1}{100}\)

   A=\(\dfrac{49}{100}\)

Bình luận (0)

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\) 

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\) 

\(=\dfrac{1}{2}-\dfrac{1}{100}\) 

\(=\dfrac{49}{100}\)

Bình luận (0)
NB
Xem chi tiết
NB
9 tháng 7 2015 lúc 20:19

a,A = 1+2+3+…+(n-1)+n

A = n (n+1):2 b,3A = 1.2.3+2.3(4-1)+3.4.(5-2)+...+99.100.(101-98) 3

A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100 3

A = 99.100.101 A = 333300

Tổng quát: A = 1.2+2.3+3.4+.… + (n - 1) n A = (n-1)n(n+1): 3

Bình luận (0)
H24
25 tháng 9 2018 lúc 21:12

a,số hạng của tổng là mở ngoặc 2n-1  đóng ngoặc chia 2+1                                                                                                                               = mở ngoặc 2n-2 chia 2+1                                                                                                                                                                                   = mở ngoặc n-1 đóng ngoặc nhaan chia 2+1                                                                                                                                                       = n-1+1=n vậy tổng  là mở ngoặc +n- đóng ngoặc nhân n chia . = n mũ  chia  = n nhân  mũ  chia  = n

Bình luận (0)
TH
Xem chi tiết