Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
TL
7 tháng 5 2015 lúc 14:44

Ta tìm số tự nhiên n để \(\frac{n+7}{n-2}\) rút gọn được

Gọi d là ước chung nguyên tố của n + 7 và n - 2

=> n+ 7 chia hết cho d

n - 2 chia hết cho d

=> (n+7) - (n- 2) chia hết cho d => 9 chia hết cho d

Mà d nguyên tố => d = 3

=> tìm n để n + 7 chia hết cho 3 và n - 2 chia hết cho 3

Do n + 7 = (n - 2) + 9 nên nếu n - 2 chia hết cho 3 thì n+ 7 sẽ chia hết cho 3

Vậy chỉ cần tìm n để n - 2 chia hết cho 3 => n - 2 = 3k (k \(\in\) N* vì n > 2) => n = 3k + 2

Với n = 3k + 2 (k \(\in\) N*) thì \(\frac{n+7}{n-2}\) rút gọn được 

=> Với n \(\ne\) 3k + 2 (k \(\in\) N*) hay n là số chia hết cho 3 hoặc chia cho 3 dư 1 thì \(\frac{n+7}{n-2}\) tối giản

Bình luận (0)
H24
11 tháng 2 2017 lúc 11:15

đúng rồi

Bình luận (0)
HM
14 tháng 3 2019 lúc 20:40

ta có :n+7/n-2 là p/s tối giản <=>uwcln(n+7,n-2)=1

gọi uwcln(n+7,n-2)=d

ta có n+7=n-2 +9

=>9 chia hết cho n-2

=>n-2 thuộc ư(9)={+-1;+-3;+-9}

=>n thuộc {3,1,5,-1,11,-7}

vì n>2 =>n={3,5,11}

vậy n thuộc {3,5,11}

Bình luận (0)
Vy
Xem chi tiết
OO
27 tháng 2 2016 lúc 15:19

giải bài toán mik với các bạn ơi !

Bình luận (0)
TV
27 tháng 2 2016 lúc 15:50

sai đề rùi

Bình luận (0)
Xem chi tiết
VL
17 tháng 4 2020 lúc 13:44

+Với n thuộc Z thì n+7 và n+2 là các số nguyên khác 0.

+Giả sử n+7/n+2 chưa tối giản

=>n+7 và n+2 chia hết cho số nguyên tố d 

+Vì (n+7) chia hết cho d (bạn viết kí hiệu chia hết nha!!)

      (n+2) chia hết cho d

=>(n+7)-(n+2) chia hết cho d

=>n+7-n-2 chia hết cho d

=>5 chia hết cho d

Mà d là số nguyên tố

nên d=5

+Với d=5 

=>(n+2) chia hết cho 5

=>n+2=5k(k thuộc N sao)

    n     =5k-2

Vậy n khác (viết kí hiệu nha) 5k-2( k thuộc N sao), n > -2 thì n+7/n+2 là phân số tối giản.

Chúc bạn học tốt!!

Bạn nhớ k đúng cho mình nha!! 

Bình luận (0)
 Khách vãng lai đã xóa
LT
9 tháng 1 2022 lúc 10:25

+Với n thuộc Z thì n+7 và n+2 là các số nguyên khác 0.

+Giả sử n+7/n+2 chưa tối giản

=>n+7 và n+2 chia hết cho số nguyên tố d 

+Vì (n+7) chia hết cho d 

      (n+2) chia hết cho d

=>(n+7)-(n+2) chia hết cho d

=>n+7-n-2 chia hết cho d

=>5 chia hết cho d

Mà d là số nguyên tố

nên d=5

+Với d=5 

=>(n+2) chia hết cho 5

=>n+2=5k(k thuộc N sao)

    n     =5k-2

Vậy n khác 5k-2( k thuộc N sao), n > -2 thì n+7/n+2 là phân số tối giản.

Bình luận (0)
CC
Xem chi tiết
NU
14 tháng 4 2020 lúc 14:31

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

Bình luận (0)
 Khách vãng lai đã xóa
NT
14 tháng 4 2020 lúc 14:50

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

Bình luận (0)
 Khách vãng lai đã xóa
CC
15 tháng 4 2020 lúc 13:45

các bn giải hộ mk bài 2 ik

thật sự mk đang rất cần nó!!!

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
HG
6 tháng 8 2015 lúc 14:46

Không khó lắm nhưng dài => Không làm nữa

Bình luận (0)
CD
Xem chi tiết
AR
12 tháng 1 2023 lúc 10:19

TK :

+Với n thuộc Z thì n+7 và n+2 là các số nguyên khác 0.

+Giả sử n+7/n+2 chưa tối giản

=>n+7 và n+2 chia hết cho số nguyên tố d 

+Vì (n+7) chia hết cho d 

      (n+2) chia hết cho d

=>(n+7)-(n+2) chia hết cho d

=>n+7-n-2 chia hết cho d

=>5 chia hết cho d

Mà d là số nguyên tố

nên d=5

+Với d=5 

=>(n+2) chia hết cho 5

=>n+2=5k(k thuộc N sao)

    n     =5k-2

Vậy n khác 5k-2( k thuộc N sao), n > -2 thì n+7/n+2 là phân số tối giản.

Bình luận (0)
H24
Xem chi tiết
LD
28 tháng 4 2016 lúc 22:38

Gọi d là ƯC(n+1 ; n+2)

=> n+1 chia hết cho d  và n+2 chia hết cho d

=>(n+2)-(n+1) chia hết d

=> 1 chia hết d

=> D=1

Vậy n+1/n+2 là phân số tối giản

Bình luận (0)
LD
28 tháng 4 2016 lúc 22:37

Để n+3/n-2 \(\in\) Z

=> n+3 chia hết n-2

=> n-2 + 5 chia hết n-2

=> 5 chia hết n-2

=> n-2 \(\in\) Ư(5)={-1;1;-5;5}

Ta có: 

n-2-11-55
n13-37
Bình luận (0)
HQ
28 tháng 4 2016 lúc 22:45

 Ta có \(\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=\frac{n-2}{n-2}+\frac{5}{n-2}=1+\frac{5}{n-2}\)

Để \(\frac{n+3}{n-2}\in Z\) thì \(\frac{5}{n-2}\in Z\Leftrightarrow\left(n-2\right)\in\text{Ư}\left(5\right)=\text{ }\left\{-5;-1;1;5\right\}\)

\(\left(+\right)n-2=-5\Leftrightarrow n=-3\left(tm\right)\)

\(\left(+\right)n-2=-1\Leftrightarrow n=1\left(tm\right)\)

\(\left(+\right)n-2=1\Leftrightarrow n=3\left(tm\right)\)

\(\left(+\right)n-2=5\Leftrightarrow n=7\left(tm\right)\)

Vậy để \(\frac{n+3}{n-2}\in Z\) thì \(n\in\left\{-3;1;3;7\right\}\)

Bình luận (0)
NT
Xem chi tiết
H24
17 tháng 3 2022 lúc 14:20

4

Bình luận (0)
H24
17 tháng 3 2022 lúc 14:23

4

Bình luận (0)
CD
1 tháng 3 2023 lúc 20:03

4 nha 

Bình luận (0)