Những câu hỏi liên quan
ZZ
Xem chi tiết
PB
Xem chi tiết
CT
22 tháng 8 2017 lúc 8:24

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b cùng dấu thì a > 0 và b > 0.

Suy ra (a/b) > (0/b) = 0 tức là a/b dương.

Bình luận (0)
H24
Xem chi tiết
TD
9 tháng 11 2015 lúc 21:27

ko bik làm thông cảm nha( OLM đừng xóa )

Bình luận (0)
H24
Xem chi tiết
TL
10 tháng 11 2015 lúc 21:34

a) Chứng minh phản chứng: Giả sử tổng đó là số hữu tỉ

=> Số hạng vô tỉ = Số hữu tỉ - Số hữu tỉ => Số vô tỉ = Số hữu tỉ => Mâu thuẫn

Vậy tổgg só là số vô tỉ

Bình luận (0)
NT
10 tháng 11 2015 lúc 21:38

là số vô tỉ

cô Loan viết xong không xem lại đề

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 1 2017 lúc 10:52

Xét số hữu tỉ a/b, có thể coi b > 0.

Nếu a, b khác dấu thì a < 0 và b > 0.

Suy ra (a/b) < (0/b) = 0 tức là a/b âm.

Bình luận (0)
DH
Xem chi tiết
TT
20 tháng 8 2015 lúc 9:38

Cho 3 **** kiểu gì nào?

a) a,b có thể là số vô tỉ. Ví dụ \(a=b=\sqrt{2}\) là vô tỉ mà ab và a/b đều hữu tỉ.

b) Trong trường hợp này \(a,b\) không là số vô tỉ (tức cả a,b đều là số hữu tỉ). Thực vậy theo giả thiết  \(a=bt\),  với \(t\) là số hữu tỉ khác \(-1\). Khi đó \(a+b=b\left(1+t\right)=s\) là số hữu tỉ, suy ra \(b=\frac{s}{1+t}\) là số hữu tỉ. Vì vậy \(a=bt\)  cũng hữu tỉ.

c) Trong trường hợp này \(a,b\)  có thể kaf số vô tỉ. Ví dụ ta lấy \(a=1-\sqrt{3},b=3+\sqrt{3}\to a,b\) vô tỉ nhưng \(a+b=4\)  là số hữu tỉ và \(a^2b^2=\left(ab\right)^2=12\)  cũng là số hữu tỉ.

Bình luận (0)
NK
Xem chi tiết
NC
25 tháng 4 2019 lúc 21:51

Ta có:

\(P\left(1\right)=a+b+c\)

\(P\left(4\right)=16a+4b+c\)

\(P\left(9\right)=81a+9b+c\)

Vì P(1); P(4) là số hữu tỉ nên \(P\left(4\right)-P\left(1\right)=15a+3b=3\left(5a+b\right)\)là số hữu tỉ

=> \(5a+b\)là số hữu tỉ (1)

Vì P(1); P(9) là số hữu tỉ nên \(P\left(9\right)-P\left(1\right)=80a+8b=8\left(10a+b\right)\)là số hữu tỉ

=> \(10a+b\)là số hữu tỉ (2)

Từ (1), (2) => \(\left(10a+b\right)-\left(5a+b\right)=10a+b-5a-b=5a\)là số hữu tỉ

=> a là số hữu tỉ

Từ (1)=> b là số hữu tỉ

=> c là số hữu tỉ

Bình luận (0)
KQ
Xem chi tiết
PB
Xem chi tiết
CT
10 tháng 11 2018 lúc 2:15

Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.

Bình luận (0)