Những câu hỏi liên quan
SY
Xem chi tiết
NN
5 tháng 3 2017 lúc 13:18

\(giải:\)\(a,\)

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)\(=\frac{a^3+a^2+a^2-1}{a^3+2a^2+2a+1}\)

                                                   \(=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}\)

                                                    \(=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)

                                                     \(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2-a+1+2a\right)}\)

                                                      \(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

                                                       \(=\frac{a^2+a-1}{a^2+a+1}\)

\(b,\)gọi d là \(ƯCLN\left(a^2+a-1,a^2+a+1\right)\)

\(\Rightarrow a^2+a-1⋮d\) và \(a^2+a+1⋮d\)

\(\Rightarrow\left(a^2+a-1\right)-\left(a^2+a+1\right)⋮d\)

\(\Rightarrow-2⋮d\)hay\(2⋮d\)

mà \(a^2+a+1=\left(a^2+a\right)+1=a\left(a+1\right)+1\)

mà a(a+1) là tích của hai số nguyên liên tiếp nên chia hết cho 2 => a(a+1) là một số chẵn => a(a+1)+1 là một số lẻ

=> a(a+1)+1 không chia hết cho 2 hay \(a^2+a+1\)ko chia hết cho 2

\(\RightarrowƯCLN\left(a^2+a-1,a^2+a+1\right)=1\)

\(\Rightarrow\frac{a^2+a-1}{a^2+a+1}\)là một phân số tối giản hay A là phân số tối giải(đpcm)

Bình luận (0)
DH
5 tháng 3 2017 lúc 13:10

a ) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b ) Gọi d là ƯC(a2 + a - 1; a2 + 1 + 1) Nên ta có :

a2 + a - 1 ⋮ d và a2 + a + 1 ⋮ d

=> (a2 + a + 1) - (a2 + a - 1) ⋮ d

=> 2 ⋮ d => d = { 1; 2 }

Xét a2 + a + 1 = a(a + 1) + 1 . Vì a(a + 1) là 2 số nguyên liên tiếp nên a(a + 1) ⋮ 2

=> a(a + 1) + 1 không chia hết cho 2

=> ƯC(a2 + a - 1; a2 + 1 + 1) = 1

=> \(\frac{a^2+a-1}{a^2+a+1}\) là phân số tối giản 

Hay \(A\)là phân số tối giản (đpcm)

Bình luận (0)
NP
Xem chi tiết
DH
27 tháng 5 2021 lúc 15:19

a) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)

b) \(A=\frac{a\left(a+1\right)-1}{a\left(a+1\right)+1}\)

Với \(a\)nguyên thì \(a\left(a+1\right)\)là tích hai số nguyên liên tiếp nên là số chẵn, do đó \(a\left(a+1\right)-1,a\left(a+1\right)+1\)là hai số lẻ liên tiếp. Do đó \(A\)là phân số tối giản. 

Bình luận (0)
 Khách vãng lai đã xóa
SK
Xem chi tiết
CX
Xem chi tiết
HG
16 tháng 3 2016 lúc 18:07

Cái đề này không rõ nhé bạn! Bạn ghi lại đề bằng fx nhéok

Bình luận (0)
CB
29 tháng 1 2017 lúc 21:18

Có đầy câu hỏi tương tự đáy bạn lên các câu hỏi đó mà xem

Bình luận (0)
MQ
Xem chi tiết
Ad
4 tháng 2 2019 lúc 15:41

a. Ta có biến đổi:

\(A=\frac{a^3+2a^2-1}{a^3+2a^3+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)

b. Gọi d là ước chung lớn nhất của \(a^2+a-1\)và \(a^2+a+1\)

Vì \(a^2+a-1=a\left(a+1\right)-1\)là số lẻ nên d là số lẻ

Mặt khác, \(2=\left[a^2+a+1-\left(a^2+a-1\right)\right]⋮d\)

Nên d = 1 tức là \(a^2+a+1\)và \(a^2+a-1\)nguyên tố cùng nhau.

Vậy biểu thức A là phân số tối giản.

Bình luận (0)
DH
Xem chi tiết
NM
26 tháng 4 2017 lúc 20:55

                                                                         Giải                                                                                                                    \(A=\frac{a^3+2a^2-1}{a^3+2a^22a+1}\)                                                                                                                                                           \(A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\)                                                                                                      \(A=\frac{a^2\left(a+1\right)\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)                                                                                                                         \(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2 +a+1\right)}\)                                                                                                                                             \(A=\frac{a^2+a-1}{a^2+a+1}\)                                                                                                                                                                  b, Gọi d là ƯCLN \(\left(a^2+a-1;a^2+a+1\right)\)                                                                                                                   \(\Rightarrow\)\(a^2+a-1⋮d\)                                                                                                                                                                     \(a^2+a+1⋮d\)                                                                                                                                                               \(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)⋮d\)                                                                                                                            \(\Rightarrow2⋮d\)                                                                                                                                                                                     \(\Rightarrow d=1\) hoặc d=2                                                                                                                                                              Nhận xét : \(a^2+a-1=a\left(a+1\right)-1\)                                                                                                                         Với số nguyên a ta có :a(a+1) là tích 2 số nguyên liên tiếp \(\Rightarrow a\left(a+1\right)⋮2\)                                                                                \(\Rightarrow a\left(a+1\right)-1\) lẻ \(\Rightarrow a^2+a-1\) lẻ                                                                                                                        \(\Rightarrow\) d không thể bằng 2                                                                                                                                                           Vậy d=1 (đpcm)

Bình luận (0)
KK
Xem chi tiết
LT
12 tháng 2 2018 lúc 9:43

 a) \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}\)

\(=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)

\(=\frac{\left(a+1\right)\left[a^2+a-1\right]}{\left(a+1\right)\left[a^2+a+1\right]}=\frac{a^2+a-1}{a^2+a+1}\)

b) Để phân số \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2+a-1}{a^2+a+1}\)

\(=\frac{\left(a^2+a+1\right)-2}{a^2+a+1}=1-\frac{2}{a^2+a+1}\)

Để phân số \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)tối giản là \(\frac{2}{a^2+a+1}\) tối giản

=> ƯCLN(2.a2+a+1)=d  \(\Rightarrow2⋮d\)

\(d=\pm1\)\(d=\pm2\)(loại) vì d là phân số tối giản

TH1: Nếu d=1  => a2+a+1=1

                       => a2+a=0

                       => a(a+1)=0   => a=0; a=-1

TH2: Nếu d=-1  => a2+a-1=-1

                        => a2+a+2=0   (không xảy ra)

Vậy d=1

Bình luận (0)
H24
11 tháng 4 2018 lúc 20:35

D = 1 nha bạn

Bình luận (0)
GB
14 tháng 5 2018 lúc 20:26

d=1 là đúng đó là kết quả của mình

Bình luận (0)
SC
Xem chi tiết
HP
Xem chi tiết
TT
21 tháng 2 2017 lúc 20:56

Ta có:  =

Điều kiện đúng a ≠  -1   ( 0,25 điểm).

Rút gọn đúng cho  0,75 điểm.

b.Gọi d là ước chung lớn nhất của  a2 + a – 1 và a2+a +1               

Vì a2 + a – 1 =  a(a+1) – 1   là số lẻ nên d là số lẻ

Mặt khác, 2 =  [ a2+a +1 – (a2 + a – 1) ]  d

Nên d = 1 tức là a2 + a + 1  và a2 + a – 1   nguyên tố cùng nhau.     

Vậy biểu thức A là phân số tối giản. 

Bình luận (0)