Những câu hỏi liên quan
NN
Xem chi tiết
NB
Xem chi tiết
NK
9 tháng 2 2017 lúc 17:58

Do vai trò của \(x,\)\(y,\)\(z\) là như nhau nên giả sử \(z\ge y\ge x\ge1.\)
Ta sẽ thử trực tiếp một vài trường hợp: 
     \(-\) Nếu \(x=1\) thì \(\frac{1}{y}+\frac{1}{z}=0\) ( vô nghiệm) 
     \(-\) Nếu \(x=2\) thì \(\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\) \(\Leftrightarrow\)\(2y+2z=yz\) \(\Leftrightarrow\)  \(\left(y-2\right)\left(z-2\right)=4\)
       Mà \(0\le y-2\le z-2\)\(4⋮\left(y-2\right),\) \(4⋮\left(z-2\right)\)
Do đó ta có các trường hợp: \(\hept{\begin{cases}y-2=1\rightarrow y=3\\z-2=4\rightarrow z=6\end{cases}}\)
                                           \(\hept{\begin{cases}y-2=2\rightarrow y=4\\z-2=2\rightarrow z=4\end{cases}}\)

     \(-\) Nếu \(x=3\) thì  \(\frac{1}{y}+\frac{1}{z}=\frac{2}{3}\)       + Nếu \(y=3\) thì \(z=3\)
                                                                              + Nều \(y\ge4\) thì \(\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}< \frac{1}{3}\)
                                                                                \(\Rightarrow\) phương trình vô nghiệm 
     \(-\)Nếu \(x=4\) thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}< 1\)   \(\Rightarrow\) phương trình vô nghiệm 

         Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)

Bình luận (0)
AN
9 tháng 2 2017 lúc 18:15

Không mất tính tổng quát ta giả sử

\(x\ge y\ge z>0\)

\(\Rightarrow\frac{1}{x}\le\frac{1}{y}\le\frac{1}{z}\)

\(\Rightarrow1=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{z}+\frac{1}{z}+\frac{1}{z}=\frac{3}{z}\)

\(\Rightarrow z\le3\)

\(\Rightarrow z=1;2;3\)

*Với z = 1 thì 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=0\)(sai vì x, y nguyên dương)

*Với z = 2 thì

\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Rightarrow y\le4\)

\(\Rightarrow y=1;2;3;4\)

+Với y = 1

\(\Rightarrow\frac{1}{x}=-\frac{1}{2}\)(loại)

+Với y = 2 thì

\(\Rightarrow\frac{1}{x}=0\)(loại)

+Với y = 3 thì

\(\frac{1}{x}=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Rightarrow x=6\)

+Với y = 4 thì

\(\frac{1}{x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)

\(\Rightarrow x=4\)

*Với z = 3 thì

\(\frac{1}{x}+\frac{1}{y}=1-\frac{1}{3}=\frac{2}{3}\)

\(\Rightarrow\frac{2}{3}\le\frac{2}{y}\)

\(\Rightarrow y\le3\)

\(\Rightarrow y=1;2;3\)

+ Với y = 1 thì

\(\frac{1}{x}=\frac{2}{3}-1=-\frac{1}{3}\)(loại)

+ Với y = 2 thì

\(\frac{1}{x}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\)

\(\Rightarrow x=6\)

+ Với y = 3 thì

\(\frac{1}{x}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)

\(\Rightarrow x=3\)

Tới đây thì bạn tự kết luận nhé 

Bình luận (0)
VQ
Xem chi tiết
KD
11 tháng 11 2016 lúc 15:29

Hỏi đáp Toán

ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi

Bình luận (1)
LL
Xem chi tiết
TT
19 tháng 11 2017 lúc 22:38

Áp dụng bất đẳng thứ Cauchy (AM-GM):

\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge3\sqrt[3]{\frac{\left(xyz\right)^2}{xyz}}=3\sqrt[3]{xyz}\)

Mà: \(0\le xyz\le1\Leftrightarrow xyz=1\)

Từ đó: \(\hept{\begin{cases}xy=\frac{1}{z}\\\frac{xy}{z}\end{cases}\Leftrightarrow\frac{1}{z^2}}\)  (1)

Tương tự: \(\hept{\begin{cases}yz=\frac{1}{x}\\\frac{yz}{x}\end{cases}\Leftrightarrow\frac{1}{x^2}}\)  (2) 

Và:  \(\hept{\begin{cases}zx=\frac{1}{y}\\\frac{zx}{y}\end{cases}}\Leftrightarrow\frac{1}{y^2}\)  (3) 

Từ trên (1)(2)(3): \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\) (Dạng Bunhiacopxki)

Dấu "=" xảy ra khi \(\Leftrightarrow x=y=z=1\)

Bình luận (0)
TM
19 tháng 11 2017 lúc 22:25

Cô si 3 số đó lại đi

Bình luận (0)
H24
19 tháng 11 2017 lúc 22:28

\(PT\Leftrightarrow xy^2+yz^2+xz^2=3xyz\ge3\sqrt[3]{xyz^4}\)

Từ đó suy ra: xyz = 1 từ đó suy ra (x,y,z) = (1,1,1);(1,−1,−1);(−1,−1,1);(−1,1,−1)

Bình luận (0)
H24
Xem chi tiết
ND
4 tháng 10 2016 lúc 14:17

x và y =14

Bình luận (0)
LT
Xem chi tiết
TC
27 tháng 8 2017 lúc 16:13

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

Bình luận (0)
NV
30 tháng 12 2018 lúc 18:24

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

Bình luận (0)
ZZ
Xem chi tiết
H24
23 tháng 4 2020 lúc 10:56

Ta có : x+1/x+y bé hơn hoặc = 1 <=> gtln = 1 tại y = 1

Tương tự ta có : gtln của VT  là 3 

Nên pt trên vô nghiệm :))

Chắc sai rồi ạ :D

Bình luận (0)
 Khách vãng lai đã xóa
KK
Xem chi tiết
XO
18 tháng 10 2020 lúc 15:27

Ta có\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)(x;y > 0)

=> \(\frac{x+y}{xy}=\frac{1}{3}\)

=> 3(x + y) = xy

=> 3x + 3y = xy

=> xy - 3x - 3y = 0

=> x(y - 3) - 3y + 9 = 9

=> x(y - 3) - 3(y - 3) = 9

=> (x - 3)(y - 3) = 9

Vì x;y > 0

=> x - 3 > -3 ; y - 3 > -3 (1)

mà 9 = 1.9 = (-1).(-9) = 3.3 = (-3).(-3) (2)

Từ (1)(2) 

=> x - 3 = 1 ; y - 3 = 9 

=> x = 4 ; y = 12

hoặc x = 12 ; y = 4

Vậy các cặp (x ; y) thỏa mãn là (4;12);(12;4)

Bình luận (0)
 Khách vãng lai đã xóa
TT
18 tháng 10 2020 lúc 15:34

Ta có \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)

\(\Leftrightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{1}{3}\)

\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{3}\)

\(\Leftrightarrow3\left(x+y\right)=xy\)

\(\Leftrightarrow3x+3y-xy=0\)

\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9\)

\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9=3.3=\left(-3\right).\left(-3\right)=1.9=9.1=\left(-1\right)\left(-9\right)=\left(-9\right)\left(-1\right)\)

\(th1\hept{\begin{cases}x-3=3\Leftrightarrow x=6\\y-3=3\Leftrightarrow y=6\end{cases}}\left(tm\right)\)

\(th2\hept{\begin{cases}x-3=-3\Leftrightarrow x=0\\y-3=-3\Leftrightarrow y=0\end{cases}}\left(ktm\right)\)

\(th3\hept{\begin{cases}x-3=1\Leftrightarrow x=4\\y-3=9\Leftrightarrow y=12\end{cases}}\left(tm\right)\)

\(th4\hept{\begin{cases}x-3=9\Leftrightarrow x=12\\y-3=1\Leftrightarrow y=4\end{cases}}\left(tm\right)\)

thử các cặp còn lại rồi kl

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
H24
8 tháng 8 2018 lúc 20:34

\(\frac{4y+2x}{xy}=1\)  <=>  \(4y+2x=xy\)

<=> \(4y-xy+2xy-8=-8\)

<=> \(y\left(4-x\right)-2\left(4-x\right)=-8\)

<=> \(\left(y-2\right)\left(4-x\right)=-8\)

Bạn giải tiếp nha !

Bình luận (0)