so sánh 2 phân số 2001/2002 và 2000/2001
Ta có \(\frac{2000}{2001}=1-\frac{1}{2001}\)
\(\frac{2001}{2002}=1-\frac{1}{2002}\)
Vì \(\frac{1}{2001}>\frac{1}{2002}\)
=> \(1-\frac{1}{2001}< 1-\frac{1}{2002}\)
=> \(\frac{2000}{2001}< \frac{2001}{2002}\)
ta thấy \(1=\frac{2000}{2001}+\frac{1}{2001}\)
\(1=\frac{2001}{2002}+\frac{1}{2002}\)
mà \(\frac{1}{2001}\) \(>\frac{1}{2002}\) ( phần bù )
\(\frac{\Rightarrow2000}{2001}< \frac{2001}{2002}\)
Không quy đồng mẫu số,hãy so sánh các phân số sau:2000/2001 và 2001/2002
+ \(\frac{2000}{2001}=\frac{2001-1}{2001}=1-\frac{1}{2001}\)
+ \(\frac{2001}{2002}=\frac{2002-1}{2002}=1-\frac{1}{2002}\)
+ \(\frac{1}{2001}>\frac{1}{2002}\Rightarrow1-\frac{1}{2001}
\(1-\frac{2000}{2001}=\frac{1}{2001}\)
\(1-\frac{2001}{2002}=\frac{1}{2002}\)
Vì \(\frac{1}{2001}>\frac{1}{2002}\) nên \(\frac{2000}{2001}
không quy đồng mẫu số,hãy so sánh các phân số sau;2000/2001 và 2001/2002
Ta có: 2000/2001 = 1 - 1/2001
2001/2002 = 1 - 1/2002
mà 1/2001 > 1/2002
--> 1 - 1/2001 < 1 - 1/2002
--> 2000/2001 < 2001/2002
Ta thấy: \(\frac{2000}{2001}=1-\frac{1}{2001}\)
\(\frac{2001}{2002}=1-\frac{1}{2002}\)
Vì: \(\frac{1}{2001}>\frac{1}{2002}\)
\(\Rightarrow\frac{2000}{2001}< \frac{2001}{2002}\)
Ta có:1-2000/2001=1/2001 1-2001/2002=1/2002
vì 1/2001>1/2002.Suy ra 2000/2001<2001/2002
không quy đồng mẫu số hãy so sánh phân số sau
2001/2000 và 2002/2001
\(\frac{2001}{2000}>\frac{2002}{2001}\)
So sánh các phân số sau bằng cách thuận tiện nhất: 2000/2001 và 2001/2002.
Ta có 1-2000/2001=1/2001
1-2001/2002=1/2002
Mà 1/2001>1/2002
=>2000/2001<2001/2002
Ta có 1-2000/2001=1/2001
1-2001/2002=1/2002
Mà 1/2001>1/2002
=>2000/2001<2001/2002
So sánh A và B, biết: A= 2000/2001 + 2001/ 2002 và B= 2000 + 2001/ 2001 + 2002
ta có:\(A=\frac{2000}{2001}+\frac{2001}{2002}<\frac{2000}{2002}+\frac{2001}{2002}=\frac{2000+2001}{2002}<\frac{2000+2001}{2001+2002}=B\)
\(\Rightarrow A
ta có:\(B=\frac{2000+2001}{2001+2002}=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
vì \(\frac{2000}{2001}>\frac{2000}{2001+2002}và\frac{2001}{2002}>\frac{2001}{2001+2002}\)
\(\Rightarrow\frac{2000}{2001}+\frac{2001}{2002}>\frac{2000+2001}{2001+2002}\)
=>A>B
So sánh 2 biểu thức A và B biết rằng:
A= 2000/2001 + 2001/2002
B= 2000 + 2001/ 2001+2002
Ta có:
\(\frac{2000}{2001}\)> \(\frac{2000}{2001+2002}\)(1)
\(\frac{2001}{2002}\)> \(\frac{2001}{2001+2002}\)(2)
Cộng các bất đẳng thức (1) và ( 2) vế với nhau:
Vậy \(\frac{2000}{2001}\)+ \(\frac{2001}{2002}\)> \(\frac{2000+2001}{2001+2002}\)hay A > B.
So sánh 2 biểu thức A và B, biết:
A = 2000/2001 + 2001/2002
B = 2000+2001/ 2001/2002
Trong phần câu hỏi tương tự có đó!
Cho A=2000/2001+2001/2002 và B=2000+2001/2001+2002
So sánh A và B
B=2000+1+2002=4003
A=2000/2001+2001/2002
=2002.(2000+2001)/2001.2002
=2000+2001/2001<1
Mà B>1 suy ra A<B