Những câu hỏi liên quan
NP
Xem chi tiết
TD
11 tháng 10 2018 lúc 11:25

1. n không chia hết cho 3 suy ra n = 3k +1 hoặc n = 3k +2.

- nếu n = 3k +1 thì 5n + 1 = 5(3k +1) +1 = 15k + 6 ⋮ 3.

- nếu n = 3k +2 thì 5n + 2 = 5(3k + 2) +2 = 15k + 12 ⋮ 3

2. p là số nguyên tố lớn hơn 3 nên p sẽ có dạng 6k + 1 hoặc 6k + 5.

nếu p là 6k + 1 thì p + 2 = 6k + 3 ⋮ 3, không là số nguyên tố

do đó p có dạng 6k+5, khi đó p + 1 = 6k : 6 ⋮ 6.

Bình luận (0)
TD
11 tháng 10 2018 lúc 11:41

3.

x(1-y) + 2(1-y) = 5

(x+2)(1-y) = 5

xét các trường hợp : x + 2 = 1; 1 - y = 5 và x + 2 = 5, 1 - y =1

4. ta có: n\(^2\) + 3 = (n+1)(n-1) + 4 ⋮ (n-1) khi 4 ⋮ (n-1), khi đó (n-1) \(\in\) Ư(4) .

Bình luận (0)
TD
11 tháng 10 2018 lúc 13:40

Câu hỏi của bạn được mình trả lời ở đây: Bài post của nguyễn mai phương

Bình luận (0)
H24
Xem chi tiết
H24
25 tháng 11 2016 lúc 11:20

k 2 k kieu gi

a+4b chia het cho 13

=>a+4b=13k (k nguyen)

a=13k-4b

10.a=130k-40b

10.a+b=130k-39b=13(10k-3b)  chia het cho 13

5n+1 chia het cho 7=> 5n+1=7k

n=7z+4 

Bình luận (0)
HN
Xem chi tiết
PM
12 tháng 8 2019 lúc 13:41

Giải:

Ta có a chia cho 72 dư 24

\(\Rightarrow a=72m+24\)

\(\Leftrightarrow a=2\left(36m+12\right)\) \(⋮\) 2

hay : \(a=3\left(24m+8\right)⋮3\)

hay: \(a=6\left(12m+4\right)⋮6\)

Vậy: \(a\) chia hết cho 2;3 và 6

Bình luận (0)
PM
12 tháng 8 2019 lúc 13:46

Bài 2: Ta có: 60.n+45 = 15.4.n+15.3

= \(15\left(4n+3\right)\) \(⋮\) \(15\)

Lại có: 60.n+45 = \(30.2.n+30+15\)

\(=30.\left(2n+1\right)+15\)

Do 30.(2n+1) \(⋮\) 30 mà 15 \(⋮̸\)30

\(̸\)\(\Rightarrow30.\left(2n+1\right)+15\) \(⋮̸\) 30

hay: \(60.n+45\) \(⋮̸\) \(30\)

Vậy: 60.n+45 chia hết cho 15 nhưng ko chia hết cho 30.

Bình luận (0)
KN
Xem chi tiết
ZZ
12 tháng 7 2019 lúc 10:26

Ta có:

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

Do \(n\left(n-1\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

Vì n là số nguyên nên n có các dạng \(5k;5k+1;5k+2;5k+3;5k+4\)

Với \(n=5k\Rightarrow n^5-n=5k\left(25k^2-1\right)\left(25k^2+1\right)⋮5\)

Với \(n=5k+1\) thì \(n-1=5k+1-1=5k\Rightarrow n^5-n⋮5\)

Với \(n=5k+2\) thì \(n^2+1=\left(5k+2\right)^2+1=25k^2+20k+5⋮5\Rightarrow n^5-n⋮5\)

Với \(n=5k+3\) thì \(n^2+1=\left(5k+3\right)^2+1=25k^2+30k+10⋮5\Rightarrow n^5-n⋮5\)

Với \(n=5k+4\) thì \(n+1=5k+5⋮5\Rightarrow n^5-n⋮5\)

Mà \(\left(2;5\right)=1\Rightarrowđpcm\)

Bình luận (0)
D2
12 tháng 7 2019 lúc 21:00

Ta có:\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right).\)

(n-1), n  là 2 số nguyên liên tiếp nên \(n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)hay \(n^5-n⋮2\)(1)

Mặt khác \(n^5-n=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Nhận thấy \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)(tích của 5 số nguyên liên tiếp); \(5n\left(n-1\right)\left(n+1\right)⋮5\)

Suy ra: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)hay \(n^5-n⋮5\)(2)

Từ (1) và (2) kết hợp với \(\left(2;5\right)=1\)Suy ra \(n^5-n⋮10\)

Cách này thực chất cũng gần giống bài của Cool Kid, nhưng lập luận để chia hết cho 5 thì hơi khác

P/S : Đây là ACC phụ nên đừng ti ck cho câu trả lời này :))

Bình luận (0)
DH
Xem chi tiết
H24
13 tháng 9 2018 lúc 16:08

Ta có n.(n+1)(n+2) là tích 3 số nguyên liên tiếp nên tồn tại 1 số chia hết cho 3

Với n hoặc n+2 chia hết cho 3 thì  n.(n+2)(n+7) sẽ chia hết cho 3

Với n+1 chia hết cho 3 thì n+1+6 chia hết cho 3 ( vì 6 chia hết cho 3 )

nên n+7 chia hết cho 3 suy ra n.(n+2)(n+7) sẽ chia hết cho 3

Vậy n.(n+2)(n+7 chia hết cho 3 với mọi n

Bình luận (0)
DH
13 tháng 9 2018 lúc 16:15

Cảm ơn bạn nhé

Bình luận (0)
DH
Xem chi tiết
NP
12 tháng 12 2015 lúc 21:30

Nếu p nguyên tố mà > 3 =>p= 3k+1 hoặc p=3k+2 

nếu p=3k+1 => p+2=3k+1+2=3k+3 mà 3k+3 > 3 => p+2 là hợp số ( loại )

=> p=3k+2 . Nếu p=3k+2 => p+1=3k+1+2=3k+3 =>p+1 là hợp số 

=> p+1 chia hết cho 2 ma (2;3)=1 => p+1 chia hết cho 6

 

 

Bình luận (0)
NA
Xem chi tiết
LD
4 tháng 8 2017 lúc 11:10

Vì n là số tự nhiên nên sảy ra hai trường hợp

+ n là số lẻ thì n = 2k + 1

=> (2k + 1 + 2)(2k + 1 + 5) = (2k + 3)(2k + 6) = (2k + 3)2(k + 3) chia hết cho 2

+ n là số chẵn thì n = 2k

=> (2k + 2)(2k + 5) = 2(k + 1)(2k + 5) chia hết cho 2

Bình luận (0)
NA
4 tháng 8 2017 lúc 11:23

cám ơn bn 

Bình luận (0)
H24
Xem chi tiết
TN
6 tháng 11 2016 lúc 20:43

1111...1(27 số 1) chia hết cho  3 vì tổng các chữ số là 27 mà 27 chia hết cho 3

                         chia hết cho 9 vì tổng các chữ số la 27 mà 27 chia hết cho 9

Một số chia hết đồng thời cho 3 và 9 nên chia hết cho 27

Bình luận (0)
TN
Xem chi tiết
BH
4 tháng 4 2017 lúc 11:10

B=n(n4-4n2+4)-n3 = n5-4n3+4n-n3=n5-5n3+4n=n(n4-5n2+4)=n(n4-n2-4n2+4)=n[n2(n2-1)-4(n2-1)]=n(n2-1)(n2-4)=n(n-1)(n-2)(n+1)(n+2)

=> B=(n-2)(n-1).n(n+1)(n+2)

Nhận thấy, các số (n-2); (n-1); n; (n+1) và (n+2) là 5 số tự nhiên liên tiếp nên ít nhất phải có 2 số là số chẵn và 1 số phải có tận cùng là 5 hoặc 0

=> Số tận cùng của B là 0

=> B chia hết cho 10 với mọi n thuộc Z

Bình luận (0)
TN
4 tháng 4 2017 lúc 15:28

cảm ơn bạn nhiều

Bình luận (0)