so sánh 2 phân số
A= 2004^2003 +1 / 2004^2004 +1
B=2004^2002+1/2004^2003 +1
so sánh 2 phân số
A= 2004^2003 +1 / 2004^2004 +1
B=2004^2002+1/2004^2003 +1
Ta có: \(2004A=\dfrac{2004^{2004}+2004}{2004^{2004}+1}=1+\dfrac{2003}{2004^{2004}+1}\)
\(2004B=\dfrac{2004^{2003}+2004}{2004^{2003}+1}=1+\dfrac{2003}{2004^{2003}+1}\)
Vì \(\dfrac{2003}{2004^{2004}+1}< \dfrac{2003}{2004^{2003}+1}\Rightarrow1+\dfrac{2003}{2004^{2004}+1}< 1+\dfrac{2003}{2004^{2003}+1}\)
\(\Rightarrow2004A< 2004B\)
\(\Rightarrow A< B\)
Vậy A < B
(1/2003+1/2004-1/2005)/(5/2003+5/2004-5/2005)-(2/2002+2/2003-2/2004)/(3/2002+3/2003-3/2004)
P=1/2003+1/2004-1/2004 - 2/2002+2/2003-2/2004
5/2003+5/2004-5/2005 3/2002+3/2003-3/2004
Tính:
B=2003.(2004^2003+2004^2002+...+2004^2+2004+1)-2004^2004+5
So sánh:2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
Câu hỏi của linh phạm - Toán lớp 6 - Học toán với OnlineMath
so sánh
2002/2003 và 2003/2004
-2002/2003 và -2005/-2004
a) Ta có: \(1-\frac{2002}{2003}=\frac{1}{2003}\)
\(1-\frac{2003}{2004}=\frac{1}{2004}\)
Vì \(\frac{1}{2003}>\frac{1}{2004}\)
\(\Rightarrow\frac{2002}{2003}>\frac{2003}{2004}\)
b) Ta có: \(\frac{-2005}{-2004}=\frac{2005}{2004}>1\)
\(\frac{-2002}{2003}
So Sánh 2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
So sánh:
2003*2004-1/2003*2004 và 2004*2005-1/2004*2005
so sánh A =2004^2003+1/2004^2004+1/ và B=2004^2004+1/2004^2005+1
Có : 2004A = 2004^2004+2004/2004^2004+1 = 1 + 2003/2004^2004+1
2004B = 2004^2005+2004/2004^2005+1 = 1 + 2003/2004^2005+1 < 1 + 2003/2004^2004+1 = 2014A
=> A > B
Tk mk nha
\(B=\frac{2004^{2004}+1}{2004^{2005}+1}< \frac{2004^{2004}+1+2003}{2004^{2005}+1+2003}=\frac{2004^{2004}+2004}{2004^{2005}+2004}=\frac{2004\left(2004^{2003}+1\right)}{2004\left(2004^{2004}+1\right)}=\frac{2004^{2003}+1}{2004^{2004}+1}=A\)
Vậy A > B
tớ có cách khác cũng ra kết quả giống bạn