3x-2y/4=2z-4y/3=4y-3z/2=x+y+z=18
tìm x,y,z biết :3x-2y/4=2z-4x/3=4y-3z/2 và x+y+z=18
= (3x-2y)/4 = (2z-4x)/3 = (4y-3z)/2
= (12x-8y)/16 = (6z-12x)/9
= (8y-6z)/4
= (12x-8y + 6z-12x + 8y-6z)/(16+9+4) = 0
<=>
{12x - 8y = 0
{6z - 12x = 0
{8y - 6z = 0
<=>
{x/2 = y/3
{z/4 = x/2
{y/3 = z/4
<=> x/2 = y/3 = z/4
làm đến đây rồi apf dụng tính chất đúng ko
Tìm x,y,z \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\) và \(x+y+z=18\)
Ta có \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)
\(\Rightarrow\dfrac{4\left(3x-2y\right)}{16}=\dfrac{3\left(2x-4x\right)}{9}=\dfrac{2\left(4y-3z\right)}{4}=\dfrac{12x-8y-12x+8y-6z}{29}\)
Do đó:
\(\dfrac{3x-2y}{4}=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\left(1\right)\)
\(\dfrac{2z-4x}{3}=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\Rightarrow x=4;y=6;z=8\)
tìm x, y ,z biết
\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\) và x+y+z = 18
Tìm x,y,z biết \(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)và x+y+z=18
Cho \(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}\) và \(x-2y+3z=8\)
Tìm x, y, z
\(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}=\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\\4y-3z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\\ \Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-2y+3z}{2-6+12}=\dfrac{8}{8}=1\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\\z=4\end{matrix}\right.\)
Tìm x, y, z biết: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\) và x + y + z = 18
Ta có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\Rightarrow\frac{4\left(3x-2y\right)}{4.4}=\frac{3\left(2z-4x\right)}{3.3}=\frac{2\left(4y-3z\right)}{2.2}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)
\(\left\{{}\begin{matrix}\frac{12x-8y}{16}=0\Rightarrow12x-8y=0\Rightarrow12x=8y\\\frac{6z-12x}{9}=0\Rightarrow6z-12x=0\Rightarrow6z=12x\end{matrix}\right.\)
\(\Rightarrow12x=8y=6z\)
\(\Rightarrow\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{12}+\frac{1}{8}+\frac{1}{6}}=\frac{18}{\frac{3}{8}}=18.\frac{8}{3}=48\)
\(\left\{{}\begin{matrix}\frac{x}{\frac{1}{12}}=48\Rightarrow x=48.\frac{1}{12}=4\\\frac{y}{\frac{1}{8}}=48\Rightarrow y=48.\frac{1}{8}=6\\\frac{z}{\frac{1}{6}}=48\Rightarrow z=48.\frac{1}{6}=8\end{matrix}\right.\)
find x,y,z know :
3x -2y/4 = 2z -4x/3 = 4y - 3z/2
and x+y+z = 45
Lời giải:
\(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)
\(\frac{4(3x-2y)}{16}=\frac{3(2z-4x)}{9}=\frac{2(4y-3z)}{4}\)
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\) (tính chất dãy tỉ số bằng nhau)
\(\Rightarrow 12x-8y=6z-12x=8y-6z=0\)
\(\Leftrightarrow 12x=8y=6z\Leftrightarrow \frac{x}{\frac{1}{12}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{12}+\frac{1}{8}+\frac{1}{6}}=\frac{45}{\frac{3}{8}}=120\)
\(\Rightarrow x=120.\frac{1}{12}=10; y=120.\frac{1}{8}=15; z=120.\frac{1}{6}=20\)
find x,y,z know :
3x -2y/4 = 2z -4x/3 = 4y - 3z/2
and x+y+z = 45
Bài đã đăng rồi thì bạn lưu ý không đăng lại nữa gây loãng box toán.
\(\dfrac{ }{ }\)3x-2y/4=2z-4x/3=4y-3z/2 và x/2=y/3=z/4☹