tim n thuoc N
\(\frac{n-2}{n+2}-\frac{n-1}{n+2}+\frac{-4}{n+2}\)
tim m,n thuoc Z biet
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
Ta thấy nếu mẫu số đầu và mẫu số của kết quả là 2 thì mẫu số sau cũng là 2
=> n = 2
Ta có
\(\frac{m}{2}-\frac{2}{2}=\frac{1}{2}\)
\(\frac{m}{2}=\frac{2}{2}+\frac{1}{2}=\frac{3}{2}\)
\(\Rightarrow m=3;n=2\)
5/2 -2/1=1/2 với m=5;n=1
3/2-2/2=1/2 với m=3;n=2
-3/2-2/-1=1/2 với m=-3;n=-1
-1/2-2/-2 =1/2 với m=-1;n=-2
CMR :\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{n^2}< 1\)
(n Thuoc N;n lon hon hoac = 2
Ta đặt:A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...\frac{1}{n^2}\)
Vì \(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
....
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
=> A < \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{\left(n-1\right)n}\)
=> A < \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
=> A < \(1-\frac{1}{n}< 1\)(ĐPCM )
Vậy A < 1
Chững minh sao bạn !!!!!!!!!!!
1 tim x,y,z biet
\(\frac{-4}{x}=\frac{y}{-14}=\frac{12}{21}=\frac{z}{-63}\)
2 tim n thuoc z n khac 0
a \(\frac{1111100:n}{23331:n}+\frac{-10}{-21}\)
b \(\frac{1075:n}{600:n}=\frac{43}{24}\)
Voi n thuoc N , n khac 0. Tinh A = \(\frac{\left(\frac{1}{4}\right)^n-\left(\frac{1}{2}\right)^n}{\left(\frac{1}{2}\right)^n-1}-\left(\frac{1}{2}\right)^n+2012\)
Cho A= \(\frac{n+2}{n-5}\) ( n thuoc Z; n khac 5). Tim n de A thuoc Z
GIUP MINH NHE
Để A thuộc Z
=> n + 2 chia hết cho n - 5
=> n - 5 + 5 + 2 chia hết cho n - 5
=> 7 chia hết cho n - 5
=> n - 5 thuộc Ư(7) = {1 ; -1; 7 ; -7}
Xét từng giá trị , ta có :
n = {6 ; 4 ; 12 ; -2}
\(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)
=>n-5 thuộc Ư(7)
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
tim n thuoc Z để các phân số sau nguyên:
a) \(\frac{3n-1}{4n+5}\)
b) \(\frac{2n+9}{n+2}\) - \(\frac{3n}{n+2}\) + \(\frac{5n+17}{n+2}\)
Viết chương trình cho phép nhập số tự nhiên N từ bàn phím (với 0<n<=12) rồi thực hiện:
a: Tìm N! = 1.2.3...N
b: tìm S = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{N!}\)
c: T = \(1+\frac{2}{2^2}+\frac{3}{3^2}+\frac{4}{4^2}+...+\frac{1}{n^2}\)
d: S = \(1+\frac{1}{2^2}+\frac{1}{3^3}+\frac{1}{4^4}+...+\frac{1}{n^n}\)
e: \(S_n=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+...+\frac{n}{n+1}\)
f: S = \(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}\)
b)
program hotrotinhoc;
var s: real;
i,n: byte;
function t(x: byte): longint;
var j: byte;
t1: longint;
begin
t1:=1;
for j:=1 to x do
t1:=t1*j;
t1:=t;
end;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+1/t(i);
write(s:1:2);
readln
end.
c) Đề em ghi sai rồi thế này với đúng :
\(T=1+\frac{2}{2^2}+\frac{3}{3^2}+\frac{4}{4^2}+...+\frac{n}{n^2}\)
program hotrotinhoc;
var t: real;
n,i: byte;
begin
readln(n);
t:=0;
for i:=1 to n do
t:=t+i/(i*i);
write(t:1:2);
readln
end.
a)
uses crt;
var N,S,i : integer;
begin clrscr;
S:=1;
for i:= 1 to N do S:=S*i;
writeln('N!=',S);
readln
end.
Các cái kia tương tự :))
d)
program hotrotinhoc;
var i,n: byte;
s: real;
function mu(x: byte): longint;
var j : byte;
k: longint;
begin
k:=1;
for j:=1 to x do
k:=k*x;
k:=mu;
end;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+1/mu(i);
write(s:1:2);
readln
end.
e)
program hotrotinhoc;
var s: real;
i,n: byte;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+i/(i+1);
write(s:1:2);
readln
end.
Tim phan nguyen cua a voi \(a=\sqrt{2}+\sqrt[3]{\frac{3}{2}}+\sqrt[4]{\frac{4}{3}}+...+\sqrt[n+1]{\frac{n+1}{n}}\)
Xét số hạng tổng quát \(\frac{n+1}{n}=1+\frac{1}{n}vif0<\frac{1}{n}<1nen1<1+\frac{1}{n}<2\Rightarrow\sqrt[n+1]{1}<\sqrt[n+1]{\frac{n+1}{n}}<\sqrt[n+1]{2}<\sqrt{2}\)
\(\Rightarrow1<\sqrt[n+1]{\frac{n+1}{n}}<\sqrt{2}\approx1,41\) => phần nguên các số có dạng \(\sqrt[n+1]{\frac{n+1}{n}}=1\)
=> vậy a có n số hạng => 1+1+1+...+1=n
Tim n thuộc N
A = \(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{n\times\left(n+2\right)}<\frac{2015}{2016}\)