Những câu hỏi liên quan
H24
Xem chi tiết
NC
27 tháng 4 2020 lúc 0:04

\(\frac{ax-b}{a}+(a+b+1)x>\frac{2b}{a}\)

<=> \(x-\frac{b}{a}+\left(a+b+1\right)x>\frac{2b}{a}\)

<=> \(\left(a+b+2\right)x>\frac{3b}{a}\)

Giờ biện luận theo  a và b thôi

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
DQ
11 tháng 10 2020 lúc 22:23

Trước hết xoá \(\frac{2x}{a^2-a+1}\)ở 2 vế. Nếu \(\frac{a}{a+1}>0\left(a< -1;a>0\right)\)thì \(x< \frac{a}{4}\). Nếu \(\frac{a}{a+1}< 0\left(-1< a< 0\right)\)thì \(x>\frac{a}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
KN
12 tháng 10 2020 lúc 7:29

\(ĐKXĐ:a\ne-1\)

\(\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{4x-1}{2a^2-2a+2}+\frac{a-2ax}{1+a^3}\Leftrightarrow\frac{2x}{a^2-a+1}-\frac{1}{2a+2}< \frac{2x}{a^2-a+1}-\frac{1}{2a^2-2a+2}+\frac{a}{1+a^3}-\frac{2ax}{1+a^3}\)\(\Leftrightarrow\frac{1}{2a+2}-\frac{1}{2a^2-2a+2}+\frac{a}{1+a^3}>\frac{2ax}{1+a^3}\Leftrightarrow\frac{a^2-a+1-a-1+2a}{2\left(a^3+1\right)}>\frac{2ax}{1+a^3}\Leftrightarrow\frac{a^2}{2\left(1+a^3\right)}>\frac{4ax}{2\left(1+a^3\right)}\)\(\Leftrightarrow\frac{4ax}{a+1}< \frac{a^2}{a+1}\)

* Nếu \(\frac{a}{a+1}>0\)(tức là a < -1 hoặc a > 0) thì \(x< \frac{a}{4}\)

* Nếu \(\frac{a}{a+1}< 0\)(tức là -1 < a < 0) thì \(x>\frac{a}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
1 tháng 1 2022 lúc 21:41

?????????????????????????

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
An
Xem chi tiết
NT
Xem chi tiết
BB
Xem chi tiết
LD
Xem chi tiết
TT
3 tháng 3 2020 lúc 11:27

a) ĐKXĐ : \(x\ne\pm a\).

Với \(a=-3\) khi đó ta có pt :

\(A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left(-9+1\right)}{\left(-3\right)^2-x^2}\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(-3-x\right)}{\left(-3-x\right)\left(-3+x\right)}+\frac{24}{\left(-3-x\right)\left(-3+x\right)}=0\)

\(\Rightarrow x^2-9-\left(-3x-x^2-9-3x\right)+24=0\)

\(\Leftrightarrow2x^2+6x+24=0\)

\(\Leftrightarrow x^2+3x+12=0\) ( vô nghiệm )

Phần b) tương tự.

Bình luận (0)
 Khách vãng lai đã xóa
TL
3 tháng 3 2020 lúc 17:32

\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3x+1\right)}{a^2-x^2}\)

\(=\frac{x+a}{a-x}+\frac{x-a}{a+x}=\frac{a\left(3+1\right)}{\left(a-x\right)\left(a+x\right)}\)

\(=\frac{\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+1\right)}=\frac{a\left(3a+1\right)}{\left(a+x\right)\left(a-x\right)}\)

\(\Leftrightarrow\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)=a\left(3a+1\right)\)

\(\Leftrightarrow x^2+2ax+a^2-ax-x^2-a^2+ax=3a^2+a\)

\(\Leftrightarrow2ax=3a^2+a\)

\(\Leftrightarrow x=\frac{3a^2+a}{2a}\left(a\ne0\right)\)

a) Khi x=-3 => \(x=\frac{3\cdot\left(-3\right)^2-3}{2\left(-3\right)}=-13\)

b) a=1

\(\Leftrightarrow x=\frac{3\cdot1^2+1}{2\cdot1}=2\)

Bình luận (0)
 Khách vãng lai đã xóa
TH
13 tháng 4 2020 lúc 19:17

tìm tham số a cho phương trình - 4x - 3 = 4x - 7 nhận x = 2 là nghiệm

Bình luận (0)
 Khách vãng lai đã xóa