Tập hợp các số nguyên của x để \(\frac{\left(x^2+4x+7\right)}{x+4}\)là số nguyên.
1/ Viết tập hợp các giá trị nguyên của x để \(x^2+4x+7⋮x+4\).
2/ Cho dãy số 1 ; 4 ; 9 ; 16 ; 25 ; 36 ; 49 ; ... Tìm số hạng thứ 80 của dãy.
3/ Tìm số các giá trị nguyên của x thỏa mãn: \(\left|2x+1\right|+\left|3-4x\right|+\left|6x+5\right|=2014\).
4/ Vẽ n tia chung gốc. Trong hình vẽ có 36 góc. Tính n.
3/ bạn lập bảng xét dấu là sẽ thấy có 4 trường hợp:
TH1: x<(-5/6), khi đó: -(2x+1)+[-(3-4x)]+[-(6x+5)]=2014
-2x-1-3+4x-6x-5=2014
-4x-9=2014
x=-2023/4 ( TM x<-5/6)
TH2: -5/6<=x<=-1/2, khi đó: 2x+1+[-(3-4x)]+[-(6x+5)]=2014
2x+1-3+4x-6x-5=2014
0x-7=2014 ( ko có giá trị x TM pt)
TH3:-1/2<=x<=3/4, khi đó: 2x+1+(3-4x)+[-(6x+5)]=2014
2x+1+3-4x-6x-5=2014
-8x-1=2014
x=-2015/8 ( ko TM -1/2<=x<=3/4 )
TH4: x>3/4; khi đó: 2x+1+3-4x+6x+5=2014
4x+9=2014
x=2005/4( TM x>3/4)
thế là xong. cái nào TM thì lấy
ghi chú <= là nhỏ hơn hoặc bằng
Câu 1: Giá trị x=... thì biểu thức \(D=\frac{-1}{5}\left(\frac{1}{4}-2x\right)^2-\left|8x-1\right|+2016\) đạt giá trị lớn nhất.
Câu 2: Tập hợp giá trị x nguyên thỏa mãn \(\left|2x-7\right|+\left|2x+1\right|\le8\)
Câu 3: Giá trị lớn nhất của \(B=3-\sqrt{x^2-25}\)
Câu 4: Số phần tử của tập hợp \(\left\{x\in Z\left|x-2\right|\le9\right\}\)
Câu 5: Giá trị nhỏ nhất của biểu thức D= \(\frac{-3}{x^2+1}-2\)
Câu 6: Có bao nhiêu cặp số (x;y) thỏa mãn đẳng thức xy=x+y
Câu 7: Gọi A là tập hợp các số nguyên dương sao cho giá trị của biểu thức: \(\frac{2\sqrt{x}+3}{\sqrt{x}-1}\) là nguyên. Số phần tử của tập hợp A là...
Câu 8: Cho x;y là các số thỏa mãn \(\left(x+6\right)^2+\left|y-7\right|=0\) khi đó x+y=...
Câu 9: Phân số dương tối giản có mẫu khác 1, biết rằng tổng của tử và mẫu số bằng 18, nó có thể viết dưới dạng số thập phân hữu hạn. Có... phân số thỏa mãn
Tập hợp các giá trị nguyên của x để \(\left(x^2+4x+7\right)\) chia hết cho \(\left(x+4\right)\)
x2 + 4x + 7 chia hết cho x + 4
=> x . ( x + 4 ) + 7 chia hết chi x + 4
Do x . ( x + 4 ) chia hết cho x + 4 nên 7 chia hết cho x + 4
=> x + 4 thuộc { 1 ; -1 ; 7 ; -7 }
=> x thuộc { -3 ; -5 ; 3 ; -11 }
Vậy x thuộc { -3 ; -5 ; 3 ; -11 }
Tìm tất cả số nguyên x để các phân số sau có giá trị là số nguyên:
\(A=\frac{3x-4}{2x-3}\)
\(B=\frac{x^3-4x-4}{x-7}\left(x\ne7\right)\)
\(A=\frac{3x-4}{2x-3}=\frac{2x-3+x-1}{2x-3}=1+\frac{x-1}{2x-3}\)
Để A có giá trị nguyên thì
\(x-1⋮2x-3\Leftrightarrow2x-2⋮2x-3\)
\(\Rightarrow2x-3-\left(2x-2\right)⋮2x-3\Rightarrow1⋮2x-3\)
\(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Có bạn nào làm được câu b không??
A=\(\frac{3x-4}{2x-3}=\frac{2x-3+x-1}{2x-3}=1+\frac{x-1}{2x-3}\)
Để A có giá trị nguyên thì:
x-1 \(⋮\)2x-3
=> 2x-2 \(⋮\)2x-3
=> 2x-3-(2x-2) \(⋮\)2x-3
=> 1 chia hết cho 2x-3
2x-3=1. hoặc. 2x-3=-1
x=1. x=2
Cho bpt \(\left(m-2\right)x^2+2\left(4-3m\right)x+10m-11\le0\) . Gọi S là tập hợp các số nguyên dương m để bpt đúng với mọi x < -4
\(f\left(x\right)=\left(m-2\right)x^2+2\left(4-3m\right)x+10m-11\le0\)
TH1: \(m=2\)
Bất phương trình tương đương \(-4x+9\le0\Leftrightarrow x\ge\dfrac{9}{4}\)
\(\Rightarrow m=2\) không thỏa mãn yêu cầu bài toán
TH2: \(m>2\)
\(f\left(x\right)\le0\forall x\in\left(x_1;x_2\right)\)
\(\Rightarrow m>2\) không thỏa mãn yêu cầu bài toán
TH3: \(m< 2\)
+) \(\Delta=-m^2+7m-6\le0\Leftrightarrow\left[{}\begin{matrix}m\le1\\m\ge6\end{matrix}\right.\)
\(f\left(x\right)\le0\forall x\in R\Rightarrow f\left(x\right)\le0\forall x< -4\)
Kết hợp điều kiện \(m< 2\) ta được \(m\le1\) thỏa mãn yêu cầu bài toán
+) \(\Delta=-m^2+7m-6>0\Leftrightarrow1< m< 6\)
Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)\) có hai nghiệm phân biệt thỏa mãn \(x_2>x_1\ge-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right).f\left(-4\right)\ge0\\\dfrac{3m-4}{m-2}>-4\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
Vậy \(S=(-\infty;1]\)
Không biết đúng chưa, bài này phức tạp quá.
1, Tìm x nguyên để phân số sau là số nguyên:
\(\frac{3x+7}{x-1}\)
2, Tìm x nguyên để các biểu thức sau đạt GTLN
\(P=2010-\left(x+1\right)^{2008};Q=1010-|3-x|;C=\frac{5}{\left(x-3\right)^2+1};D=\frac{4}{|x-2|+2}\)
1 Giải :
\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1
Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)
Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
x - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên
Đặt \(A=\frac{3x+7}{x-1}\)
Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)
Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)
a, Ta có: \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010\)
Dấu " = " khi \(\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy \(MAX_P=2010\Leftrightarrow x=-1\)
\(\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right):\frac{-5}{6}< x< \frac{4}{21}:\frac{4}{7}\)
tìm tập hợp các số nguyên x biết:
\(\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right):\frac{-5}{6}< x< \frac{4}{21}.\frac{4}{7}\)
\(\Rightarrow\left(\frac{6}{12}+\frac{9}{12}-\frac{4}{12}\right):\frac{-10}{12}< x< \frac{16}{147}\)
\(\Rightarrow\frac{11}{12}.\frac{-12}{10}< x< \frac{16}{147}\)
\(\Rightarrow\frac{-11}{10}< x< \frac{16}{147}\)
\(\Rightarrow\frac{-1617}{1470}< x< \frac{16}{1470}\)
\(x=\left\{-1;0\right\}\)
Tập hợp các giá trị nguyên dương của x thỏa mản :\(\left(\right)\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\left(\right)\times x<\frac{13}{7}\)có số phần tử là
Tập hợp các giá trị nguyên của x để biểu thức M = \(\left|x-\frac{5}{4}\right|+\left|x+2\right|\) đạt giá trị nhỏ nhất là {..........}