Tìm số nguyên n sao cho: n + 1999 và n + 2008 là số chính phương
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cmr 2018^4n+2019^4n+2020^4n ko phải là số chính phương với mọi số nguyên n
tìm số nguyên n sao cho 1955+n và 2014+n là số chính phương
tìm số tự nhiên n sao cho 2^n +9 là số chính phương
a) Đặt A = 20184n + 20194n + 20204n
= (20184)n + (20194)n + (20204)n
= (....6)n + (....1)n + (....0)n
= (...6) + (...1) + (...0) = (....7)
=> A không là số chính phương
b) Đặt 1995 + n = a2 (1)
2014 + n = b2 (2)
a;b \(\inℤ\)
=> (2004 + n) - (1995 + n) = b2 - a2
=> b2 - a2 = 9
=> b2 - ab + ab - a2 = 9
=> b(b - a) + a(b - a) = 9
=> (b + a)(b - a) = 9
Lập bảng xét các trường hợp
b - a | 1 | 9 | -1 | -9 | 3 | -3 |
b + a | 9 | 1 | -9 | -1 | -3 | 3 |
a | -4 | 4 | 4 | -4 | -3 | 3 |
b | 5 | 5 | -5 | -5 | 0 | 0 |
Từ a;b tìm được thay vào (1)(2) ta được
n = -1979 ; n = -2014 ;
Xét số nguyên n lớn hơn 2008 sao cho hai số \(2n-4015\)và \(3n-6023\)đều là số chính phương. Hãy tìm số dư khi chia n cho 40.
tìm số nguyên n sao cho 1955+n và 2014+n là số chính phương
Do \(1955+n,2014+n\) là số chính phương
\(\Rightarrow\left\{{}\begin{matrix}1955+n=a^2\\2014+n=b^2\end{matrix}\right.\) \(\left(a,b\in Z\right)\)
\(\Rightarrow b^2-a^2=59\)
\(\Rightarrow\left(b-a\right)\left(b+a\right)=59\).
Mà \(a,b\in Z\) nên ta có các TH sau :
\(b-a\) | \(-1\) | \(1\) | \(-59\) | \(59\) |
\(a+b\) | \(-59\) | \(59\) | \(-1\) | \(1\) |
\(a\) | \(29\) | \(-29\) | \(-29\) | \(29\) |
\(b\) | \(-30\) | \(30\) | \(-30\) | \(30\) |
\(n\) | \(-1114\) | \(-1114\) | \(-1114\) | \(-1114\) |
Thử lại ta chọn \(n=-1114\)
Vậy : \(n=-1114\) thỏa mãn đề.
tìm số nguyên n sao cho 1955+n và 2014+n là số chính phương
\(n+1995=a^2,n+2014=b^2\)
Trừ vế theo vế ta được:
\(b^2-a^2=59\)
\(\Leftrightarrow\left(b-a\right)\left(b+a\right)=59\)
Do \(59\)là số nguyên tố và \(b>a\)nên ta chỉ có một trường hợp:
\(\hept{\begin{cases}b-a=1\\b+a=59\end{cases}}\Leftrightarrow\hept{\begin{cases}b=30\\a=29\end{cases}}\)
Khi đó \(n=-1114\).
Sai rồi cô ạ. n = -1154 chứ không phải n = -1114.
à không ạ. hình như đề bài bị sai hay sao ấy
tìm số nguyên tố n sao cho n+1945 và n+2004 là số chính phương
Câu 6. Tích chính phương – tichcp.* Cho trước số nguyên dương N (0< N≤ 1012). Yêu cầu: Tìm số nguyên dương K (K≥1) nhỏ nhất sao cho tích của K và N là một số chính phương. Dữ liệu vào: một số nguyên dương N. Dữ liệu ra: ghi số nguyên K tìm được. Ví dụ: input output 3 3 18 2 Ràng buộc
-Có 50% số test ứng với 𝑁 ≤ 10
-Có 50% số test ứng với 𝑁 ≤ 1012
#include <bits/stdc++.h>
using namespace std;
long long a[1000006];
long long n;
int main()
{
for(int i=1;i<=1000006;i++){
a[i]=i*i;
}
cin>>n;
for(int i=1;i<=n;i++){
if(a[i]%n==0){cout<<a[i]/n;break;}
}
return 0;
}
tìm p là số nguyên tố và n là số tự nhiên sao cho p^(n+1) là số chính phương
Bạn chỉ cần cho \(n\) lẻ thì \(p^{n+1}\) chính phương rồi nhé.
1.Tìm số nguyên n sao cho n^2+3 là số chính phương
2.Tìm số tự nhiên n để n^2+3n+2 là số nguyên tố
3.Tìm số nguyên tố p để p+1 là số chính phương
Tìm tất cả các số nguyên n sao cho n+1930 và n + 2539 đều là số chính phương
n+1930, n+2539 là số chính phương
Khi đó sẽ tồn tại số nguyên a, b sao cho:
\(n+1930=a^2,n+2539=b^2\)
Ta có: \(b^2-a^2=\left(n+2539\right)-\left(n+1930\right)=609\)
=> \(\left(b-a\right)\left(b+a\right)=1.609=609.1=-1.\left(-609\right)=\left(-609\right).\left(-1\right)\)
\(=3.203=203.3=-3.\left(-203\right)=\left(-203\right).\left(-3\right)\)
Vì a, b nguyên nên a-b và a+b nguyên
Em kẻ bảng làm tiếp nhé