Những câu hỏi liên quan
ON
Xem chi tiết
PH
9 tháng 4 2017 lúc 9:57

tu lam di

Bình luận (0)
H24
21 tháng 4 2023 lúc 22:41

tự làm đi 1/2.3+1/4.5+...+1/100.101. không thể khử liên tiếp được thì làm bằng niềm tin.

Bình luận (0)
NM
Xem chi tiết
PK
30 tháng 4 2016 lúc 13:00

Đặt \(A=\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(\Rightarrow A< \left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\right)+\left(\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\right)\)

\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}+\frac{1}{100.101}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{101}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

Vậy \(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}< 2\) (đpcm)

Bình luận (0)
PT
30 tháng 4 2016 lúc 18:09

Mai ơi, bài này thầy dạy hôm chiều cậu nghỉ đóoaoa

Bình luận (0)
ON
Xem chi tiết
H24
8 tháng 4 2017 lúc 19:13

đề còn thiếu bạn ơi. Chứng minh cái gì

Bình luận (0)
ON
9 tháng 4 2017 lúc 9:36

ĐỀ bài chỉ có thế thôi bạn ạ

Bình luận (0)
ON
9 tháng 4 2017 lúc 9:40

À còn >1/2 mình quên mất

Bình luận (0)
HA
Xem chi tiết
NA
Xem chi tiết
NL
6 tháng 2 2023 lúc 21:19

A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

A=1/3-1/9

A=2/9

Bình luận (0)
NL
6 tháng 2 2023 lúc 21:20

các câu 2;3 còn lại giống câu 1 bạn nhé

bạn thay số vào rồi làm tương tự

Bình luận (0)
PL
6 tháng 4 2024 lúc 18:51

A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

A=1/3-1/9

A=2/9.

Bình luận (0)
ND
Xem chi tiết
H24
13 tháng 8 2016 lúc 20:42

a)=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

b)\(=\frac{201.204+1}{\left(201+2\right).204-407}\)

\(=\frac{201.204+1}{201.204+2.204-407}\)

\(=\frac{201.204+1}{201.204+1}\)

=1

Bình luận (0)
VT
13 tháng 8 2016 lúc 20:40

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

Bình luận (0)
TM
13 tháng 8 2016 lúc 20:41

a, \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

Bình luận (0)
DT
Xem chi tiết
NM
Xem chi tiết
NN
16 tháng 8 2017 lúc 21:21

A=1/2 x 3/4 x 5/6 x 7/8 x.....x 79/80

Bởi vì 1/2 x 3/4 x 5./6 x...x79/80 ( tử số < mẫu số ) 

 => A < 1

Như vậy A sẽ phải lớn hơn 1/9

Cho nên ko thể chứng minh A < 1/9

Bình luận (0)
TD
Xem chi tiết
ND
22 tháng 5 2017 lúc 14:20

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

Bình luận (0)
ML
22 tháng 5 2017 lúc 14:21

Đây là tính chứ chứng minh cái gì ? 

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

Bình luận (0)
H24
22 tháng 5 2017 lúc 14:25

Lập luận: 1/1.2 = 1/1 - 1/2 ; 1/2.3 = 1/2 - 1/3 ; 1/3.4 = 1/3 - 1/4 ; làm tương tự với các số kia.

Ta có: 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + 1/9 - 1/10

= 1 - 1/10

= 9/10

Bình luận (0)