tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:
A=\(\frac{5}{\left(x-3\right)^2+1}\)
Bài 1: Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất:
\(P=2010-\left(x+1\right)^{2008}\)
Bài 2: Tìm x nguyên để các biểu thức sau đạt giá trị nhỏ nhất:
\(C=\frac{5}{\left|x\right|-2}\)
Làm giúp mik nhé! Thanks
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể
1,Tìm x nguyên để biểu thức sau đạt giá trị nhỏ nhất:
D = \(\frac{x+5}{x-4}\)
2,Tìm x nguyên để biểu thức sau đạt giá trị lớn nhất:
C= \(\frac{5}{\left(x-3\right)^2+1}\)
D=\(\frac{4}{\left|x-2\right|+2}\)
Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất
\(Q=1010-|3-x|\)
\(C=\frac{5}{\left\{x-\right\}^2+1}\)
mình chỉ làm 1 bài thôi :
\(Q=1010-\left|3-X\right|\)
trường hợp này thì |3-x| phải là số tự nhiên bé nhất => |3-x|=0
=> 3-x=0
x=3-0=3
=> x=3
tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất ?
Q= \(\frac{5}{\left(x-3\right)^2+1}\)5
D = \(\frac{4}{\left|x-2\right|+2}\)
C=1010 - |3-x|
mình gửi rồi nhưng nó bị mất nên cậu chờ một tí
tìm x nguyên để các biểu tức sau đạt giá trị lớn nhất
\(P=2010-\left(x+1\right)^{2005}\)
\(Q=1010-\left|3-x\right|\)
\(C=\dfrac{5}{\left(x+3\right)^2+1}\) \(D=\dfrac{4}{\left|x-2\right|+2}\)
Bài 14. Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất
a. P = 4 – (x – 2)³²
b. Q = 20 – |3 – x|
c. C = \(\frac{5}{\left(x-3\right)^2+1}\)
Bài làm:
a) \(P=4-\left(x-2\right)^{32}\le4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-2\right)^{32}=0\Rightarrow x=2\)
b) \(Q=20-\left|3-x\right|\le20\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3-x\right|=0\Rightarrow x=3\)
c) \(C=\frac{5}{\left(x-3\right)^2+1}\le\frac{5}{1}=5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)
a) P = 4 - (x - 2)32
Do \(\left(x-2\right)^{32}\ge0\forall x\)
=> \(P=4-\left(x-2\right)^{32}\le4\)
Dấu " = " xảy ra khi và chỉ khi \(\left(x-2\right)^{32}=0\)hay khi x = 2
Vậy GTLN của P là 4 khi x = 2
b) Q = 20 - | 3 - x|
Do \(\left|3-x\right|\ge0\)
=> \(Q=20-\left|3-x\right|\le20\)
Dấu " = " xảy ra khi | 3 - x| = 0 => x = 3
Vậy GTLN của Q bằng 20 khi x = 3
c) Do \(\left(x-3\right)^2\ge0\)
=> \(\left(x-3\right)^2+1\le1\)
=> \(\frac{5}{\left(x-3\right)^2+1}\le\frac{5}{1}=5\)
Dấu " = " xảy ra khi (x - 3)2 = 0 => x = 3
Vậy GTLN của C = 5 khi x = 3
P/s : k chắc câu c
a) Tìm n nguyên để các biểu thức sau đạt giá trị nhỏ nhất:
A = (n-1)2 + 2012
B = \(\frac{6n+21}{2n-1}\)
b) Tìm n nguyên để các biểu thức sau đạt giá trị lớn nhất
C = 2012 - (n + 1)2
D = \(\frac{5}{\left(x-3\right)^2+1}\)
E = \(\frac{6n+21}{2n-1}\)
Tìm x nguyên để các biểu thức sau đạt giá trị lớn nhất
P = \(4-\left(x-2\right)^{32}\)
Q = 20 - / 3 - x /
C = \(\frac{5}{\left(x-3^2+1\right)}\)
D = \(\frac{4}{Ix-2I+2}\)
Q=20-/3-x/ lớn nhất khi /3-x/ nhỏ nhất
nên /3-x/=0(vì /3-x/ luôn >=0 dấu)
3-x=0
x=3
D=4/\x-2\+2 lớn nhất khi và chỉ khi \x-2\+2 nhỏ nhất,khác 0 và lớn hơn=2(vì \x-2\ luôn EN)
nên \x-2\+2=2
\x-2\=0
x-2=0
x=2
P=4-(x-2)^32 lớn nhất khi (x-2)^32 nhỏ nhất
Mà (x-2)^32 luôn>=0(vì có số mũ là số chẵn)
nên (x-2)^32=0
x-2=0
x=2
Tìm các giá trị nguyên của x để biểu thức C = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)\(\left(x\ge0;x\ne4\right)\) đạt giá trị lớn nhất
`C=(sqrtx+3)/(sqrtx-2)=(sqrtx-2+5)/(sqrtx-2)=1+5/(sqrtx-2)`
Ta cần tìm `max(5/(sqrtx-2))`
Nếu `0<=x<4` thì `5/(sqrtx-2)<0`
Nếu `x>4` thì `5/(sqrtx-2)>0`
Do đó ta chỉ xét `x>4` hay `x>=5(` Do `x` nguyên `)`
`=>sqrtx-2>=sqrt5-2`
`=>5/(sqrtx-2)<=5/(sqrt5-2)`
`=>C<=1+5/(sqrt5-2)=11+sqrt5`
Vậy `C_(max)=11+sqrt5<=>x=5`