Biết a+4b chia hết cho 13(a,b thuộc N). Chứng minh 10a+b chia hết cho 13
Cho biết a + 4b chia hết cho 13 ( a, b thuộc N), chứng minh rằng 10a + b chia hết cho 13
Nếu (a + 4b) chia hết 13 thì 10.(a + 4b) cũng chia hết cho 13
Vì 39b chia hết cho 13
Nên 10.(a + 4b) - 39b cũng chia hết cho 13
Chứng tỏ 10a + b chia hết cho 13
(39b là mình lấy từ 10.(a + 4b) -10a + b đó bạn)
Nếu (a + 4b) chia hết 13 thì 10.(a + 4b) cũng chia hết cho 13
Vì 39b chia hết cho 13
Nên 10.(a + 4b) - 39b cũng chia hết cho 13
Chứng tỏ 10a + b chia hết cho 13
(39b là mình lấy từ 10.(a + 4b) -10a + b )
nếu đổi ngược lại thành 10a + b chia hết cho 13 thì a +4b chia hết cho 13 thì làm thế nào
Biết a+4b chia hết 13(a,b thuộc n). Chứng minh 10a+b chia hết cho 13
a+4b chia hết cho 13=>3(a+4b) chia hết cho 13
hay 3a+12b chia hết cho 13
mà 13a+13b chia hết cho 13
=>13a+13b-3a+12b=10a+b chia hết cho 13 (đpcm)
a) Chứng tỏ 2x + 3y chia hết cho 17 thì 9x + 5y chia hết chia hết cho 17
b) Cho biết a + 4b chia hết cho 13( a,b thuộc N) Chứng minh 10a + b chia hết 13
Biết a+4b chia hết cho 13(a,b thuộc N). Chứng minh 10a+b chia hết cho 13
a+4b\(⋮\)13\(\Rightarrow\)10.(a+4b) cũng \(⋮\)13
mà 10.(a+4b)=10.a+40.b=10a+b+39b
Xét tổng trên thấy 39b\(⋮\)13\(\Rightarrow\)10a+b\(⋮\)13
a+4b chia hết cho 13->10.(a+4b) cũng chia hết cho 13
mà 10.(a+4b)=10.a=10a+b+39b
Ta thấy tổng 39b chia hết cho 13 ->10a+b chia hết cho 13
Đây là kq của mk
cho a,b thuộc tập hợp số tự nhiên
Biết a + 4b chia hết cho 13. Chứng minh 10a + b chia hết cho 13
Biết 3a + 2b chia hết cho 17. Chứng minh 10a + b chia hết cho 17
Biết a -5b chia hết cho 17. Chứng minh 10a + b chia hết cho 17
cho biết a+4b chia hết cho 13 (a,b thuộc N ).Chứng minh rằng :10a+b chia hết cho13
Cho 10a+b chia hết cho 13 (a,b thuộc N).Chứng minh rằng a+4b chia hết cho 13.
10a + b chia hết cho 13
10a + b + 39b chia hết cho 13
10a + 40b chia hết cho 13
10(a + 4b) chia hết cho 13
Vì UCLN(10 ; 13) = 1
Do đó a + 4b chia hết cho 13
cho a+4b chia hết cho 13 (a,b thuộc N*). chứng minh: 10a +b chia hết cho 13
Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1). Lấy (1) - 39b (luôn chia hết cho 13) dc 10a +b -> 10a + b chia hết cho 13. Ngược lại cũng tương tự.
Nếu a + 4b chia hết cho 13
-> 10a + 40b chia hết cho 13 (1). Lấy (1) - 39b (luôn chia hết cho 13) dc 10a +b
-> 10a + b chia hết cho 13.
Cho biết a + 4b chia hết cho 13 với a,b thuộc Z. Chứng minh rằng 10a + b chia hết cho 13.
Ta có:
3 . (a + 4b) + (10a + b) = 3a + 12b + 10a + b = (3a + 10a) + (12b + b) = 13a + 13b = 13 . (a + b) chia hết cho 13.
Mà a + 4b chia hết cho 13 nên 3 . (a + 4b) chia hết cho 13 mà tổng 3 . (a + 4b) + (10a + b) cũng chia hết cho 13
suy ra 10a + b chia hết cho 13
Ta có:
a + 4b chia hết cho 13
=>10.(a + 4b) chia hết cho 13
=>10a+40b chia hết cho 13
Mà 39b chia hết cho 13
=> (10a+40b)-39b chia hết cho 13
=>10a+b chia hết cho 13
Vậy 10a+b chia hết cho 13
Ta có:
3 . (a + 4b) + (10a + b) = 3a + 12b + 10a + b = (3a + 10a) + (12b + b) = 13a + 13b = 13 . (a + b) chia hết cho 13.
Mà a + 4b chia hết cho 13 nên 3 . (a + 4b) chia hết cho 13 mà tổng 3 . (a + 4b) + (10a + b) cũng chia hết cho 13
suy ra 10a + b chia hết cho 13