Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
ED
Xem chi tiết
NN
26 tháng 3 2017 lúc 12:03

Áp dụng tính chất \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+m}{b+m}\)ta có:

\(B=\frac{2015^{2017}+1}{2015^{2018}+1}< \frac{2015^{2017}+1+2014}{2015^{2018}+1+2014}=\frac{2015^{2017}+2015}{2015^{2018}+2015}\)

\(=\frac{2015\left(2015^{2016}+1\right)}{2015\left(2015^{2017}+1\right)}=\frac{2015^{2016}+1}{2015^{2017}+1}\)

\(\Rightarrow\frac{2015^{2017}+1}{2015^{2018}+1}< \frac{2015^{2016}+1}{2015^{2017}+1}\)

Vậy \(B< A\)

Hay \(A>B\)

Bình luận (0)
TL
Xem chi tiết
DT
13 tháng 7 2015 lúc 16:22

Ta có 20152015 = 20152015

Ta so sánh 20152016+1 và 20152011+1

Vì 20152016 > 20152011

=> 20152016+1 > 20152011 +1

2 phân số có cùng tử số, mẫu của phân số nào nhỏ hơn thì phân số đó lớn hơn

=>\(\frac{2015^{2015}+1}{2015^{2016}+1}

Bình luận (0)
TN
20 tháng 9 2016 lúc 13:25

(2015-2014)\(2016\):(2016-2015)\(2020\)

Bình luận (0)
PH
20 tháng 9 2016 lúc 13:36

ta thấy \(\frac{2015^{2015}+1}{2015^{2016}+1}\)và \(\frac{2015^{2015}+1}{2015^{2017}+1}\)có cùng từ số là \(2015^{2015}+1\)

do đó ta so sánh \(2015^{2016}+1\)với \(2015^{2017}+1\)

ta thấy 20152016 < 20152017

do đó \(2015^{2016}+1< 2015^{2017}+1\)

\(\frac{2015^{2015}+1}{2015^{2016}+1}>\frac{2015^{2015}+1}{2015^{2017}+1}\)

vì phân số có cùng tử số mẫu số nào lớn hơn thì phân số đó nhỏ hơn

Bình luận (0)
HL
Xem chi tiết
NA
26 tháng 4 2016 lúc 9:02

a)

A=B

b)

N>M

Bình luận (0)
TD
26 tháng 4 2016 lúc 8:29

a, A và B bằng nhau

b, N>M

Bình luận (0)
BT
26 tháng 4 2016 lúc 8:34

a, A=B
b, M<N

Bình luận (0)
N4
Xem chi tiết
H24
7 tháng 11 2017 lúc 17:17

Trước tiên để tính diện tích hình thang chúng ta có công thức Chiều cao nhân với trung bình cộng hai cạnh đáy.
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 2
S = h * (a+b)1/2
Trong đó
a: Cạnh đáy 1
b: Cạnh đáy 2
h: Chiều cao hạ từ cạnh đấy a xuống b hoặc ngược lại(khoảng cách giữa 2 cạnh đáy)
Ví dụ: giả sử ta có hình thang ABCD với các cạnh AB = 8, cạnh đáy CD = 13, chiều cao giữa 2 cạnh đáy là 7 thì chúng ta sẽ có phép tính diện tích hình thang là:
S(ABCD) = 7 * (8+13)/2 = 73.5
cach tinh dien h hinh thang vuong can khi biet do dai 4 canh cong thuc tinh 3
Tương tự với trường hợp hình thang vuông có chiều cao AC = 8, cạnh AB = 10.9, cạnh CD = 13, chúng ta cũng tính như sau:
S(ABCD) = AC * (AB + CD)/2 = 8 * (10.9 + 13)/2 = 95.6

Bình luận (0)
NT
Xem chi tiết
ND
Xem chi tiết
PQ
23 tháng 4 2018 lúc 19:35

Mấy bài dạng này biết cách làm là oke 

Ta có : 

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\left(2016-1-1-...-1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)

\(A=2017\)

Vậy \(A=2017\)

Chúc bạn học tốt ~ 

Bình luận (0)
HM
23 tháng 4 2018 lúc 19:40

\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

(số 2016 tách ra làm 2016 số 1 rồi cộng vào từng phân số, còn dư 1 số viết thành 2017/2017 nghe bạn!!! :)))

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)

\(A=2017\)

Bình luận (0)
DW
Xem chi tiết
PA
1 tháng 9 2016 lúc 12:09

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

Bình luận (0)
PN
Xem chi tiết
VH
1 tháng 10 2015 lúc 11:30

Ta có 20152015 : 20152015
Ta so sánh 20152016+1 và 20152011+1
Vì 20152015 > 20152011
20152016+1 > 20152011 +1
2 phân số có cùng tử số, mẫu của phân số nào nhỏ hơn thì phân số đó lớn hơn
20152015 + 1 < 20152015 + 1
20152016 + 1    20152017 + 1

ko biết mình là đúng không

Bình luận (0)
PL
Xem chi tiết
TN
26 tháng 4 2016 lúc 11:33

\(A=\frac{2015+2016}{2016+2017}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)

\(B=\frac{2015}{2016}+\frac{2016}{2017}\)

vì \(\frac{2015}{2016+2017}<\frac{2015}{2016}\)và \(\frac{2016}{2016+2017}<\frac{2016}{2017}\)

nên A <B

Bình luận (0)