Cho hình thang cân ABCD có đáy lớn AB bằng đường chéo AC và CD2=2BC2.Tính góc BAD
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hình thang cân ABCD có đáy lớn AB bằng đường chéo AC và \(CD^2\)=\(2BC^2\). Tính góc BAD
Cho hình thang cân ABCD có đáy lớn AB bằng đường chéo AC, CD2=2.BC2 Tính góc BAD
VẼ hình phụ đi bạn lấy M là trung điểm của CD.Kẻ MN,DH vuông góc với AB
Cho hình thang cân ABCD có đáy lớn AB bằng đường chéo Ac và \(CD^2=2BC^2\).Tính góc BAD
Các bạn trả lời nhanh mình với, ai trả lời đầu tiên ma đúng kết quả mình chọn
Lấy M là trung điểm CD kẻ MN,DH vuông góc AB.Nối AM,BM.Từ đó tính được BAD=75
1.cho hình thoi ABCD. có góc BAD bằng 40 độ. o là giao điểm của 2 đường chéo H là hình chiếu của O trên AB trên tia dối của tia BC và DC lần lượt lấy M,N sao cho HM//AN. tính góc MON
2. Cho hình vuông ABCD E là tâm của hình vuông. M là trung điểm của AB. Lấy G,H trên BC,CD sao cho MG//AH tính góc GEH
3. Cho hình thang cân ABCD có đáy lớn AB bằng đường chéo AC, đáy nhỏ CD=căn 2 nhân BC.Tính các góc của hình thang ABCD
Cho hình thang cân ABCD có đáy lớn AB bằng đường chéo AC, đáy nhỏ CD = \(\sqrt{2}BC.\)Tính các góc của hình thang ABCD.
Bài 3: Cho hình thang cân ABCD. Đáy nhỏ AB bằng cạnh bên BC và đường chéo AC vuông góc với cạnh bên AD.
a) Tính các góc của hình thang cân.
b) Chứng minh rằng trong hình thang cân đó đáy lớn gấp đôi đáy nhỏ.
Cho hình thang cân ABCD, đáy nhỏ AB bằng cạnh bên AC, đường chéo AC vuông góc AD
A)tính các góc ?
b) CMR trong hình thang cân đáy lớn bằng 2 đáy nhỏ
a
2 góc A, B bằng 120 độ
2 góc C, D bằng 60 độ
chứng minh 90 độ - góc BCA = 0 suy ra góc BCA = 30 độ
b) chỉ cân chứng minh AD = 1/2 BC
trong tam giác ACD vuông có 1 góc 30 độ, 1 góc 60 độ
nên góc đối diện với góc 30 độ bằng 1/2 cạnh huyền
Cho hình thang cân ABCD (AB//CD) đáy nhỏ AB = BC và đường chéo AC vuông góc với AD
a) Tính số đo các góc của hình thang cân
b) Chứng minh rằng trong hình thang cân đó đáy lớn gấp đôi đáy nhỏ
Câu 11.11. Tính diện tích hình thang ABCD, có đường cao bằng 12 cm, hai đường chéo AC và BD vuông góc với nhau, DB = 15 cm.
Câu 11.12. Hình thang cân ABCD có đáy lớn CD = 10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tìm đường cao của hình thang
Câu 11.12.
Kẻ đường cao \(AH,BK\).
Do tam giác \(\Delta AHD=\Delta BKC\left(ch-gn\right)\)nên \(DH=BK\).
Đặt \(AB=AH=x\left(cm\right),x>0\).
Suy ra \(DH=\frac{10-x}{2}\left(cm\right)\)
Xét tam giác \(AHD\)vuông tại \(H\):
\(AD^2=AH^2+HD^2=x^2+\left(\frac{10-x}{2}\right)^2\)(định lí Pythagore)
Xét tam giác \(DAC\)vuông tại \(A\)đường cao \(AH\):
\(AD^2=DH.DC=10.\left(\frac{10-x}{2}\right)\)
Suy ra \(x^2+\left(\frac{10-x}{2}\right)^2=10.\frac{10-x}{2}\)
\(\Leftrightarrow x=2\sqrt{5}\)(vì \(x>0\))
Vậy đường cao của hình thang là \(2\sqrt{5}cm\).
Câu 11.11.
Kẻ \(AE\perp AC,E\in CD\).
Khi đó \(AE//BD,AB//DE\)nên \(ABDE\)là hình bình hành.
Suy ra \(AE=BD=15\left(cm\right)\).
Kẻ đường cao \(AH\perp CD\)suy ra \(AH=12\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AH\):
\(\frac{1}{AH^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AE^2}=\frac{1}{12^2}-\frac{1}{15^2}=\frac{1}{400}\)
\(\Rightarrow AC=20\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.15.20=150\left(cm^2\right)\),