So sánh:
M=\(\frac{10^7+5}{10^7-8}\) và N=\(\frac{10^8+6}{10^8-7}\)
1. So Sánh: \(A=\frac{10^7+5}{10^7-8};B=\frac{10^8+6}{10^8-7}\)
dễ thôi
A=\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
B=\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
\(10^8>10^7nen10^8-7>10^7-8\)
=> \(\frac{13}{10^8-7}< \frac{13}{10^7-8}hayB< A\)
\(\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1-\frac{13}{10^7-8}\);\(\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1-\frac{13}{10^7-7}\)
Vì \(\frac{13}{10^8-8}< \frac{13}{10^7-7}\)nên A>B
Ta có :
\(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Mà \(\frac{13}{10^7-8}>\frac{13}{10^8-7}\left(10^7-8< 10^8-7\right)\)
\(\Rightarrow1+\frac{13}{10^7-8}>1+\frac{13}{10^8-7}\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
~ Ủng hộ nhé
So sánh A và B:
a)A=\(\frac{10^7+5}{10^7-8}\); B=\(\frac{10^8+6}{10^8-7}\)
\(A=\frac{10^7+5}{10^7-8}=\frac{\left(10^7-8\right)+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{\left(10^8-7\right)+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\) nên \(\frac{13}{10^7-8}>\frac{13}{10^8-7}\)
\(\Rightarrow1+\frac{13}{10^7-8}>1+\frac{13}{10^8-7}\) do đó \(A>B\)
So sánh A và B biết:
a) \(A=\frac{3}{83}+\frac{7}{84};B=\frac{7}{83}+\frac{3}{84}\)
b) \(A=\frac{10^7+5}{10^7-8};B=\frac{10^8+6}{10^8-7}\)
Lời giải:
a.
\(A-B=\frac{7-3}{84}-\frac{7-3}{83}=\frac{4}{84}-\frac{4}{83}<0\\ \Rightarrow A< B\)
b.
\(A-1=\frac{13}{10^7-8}\\ B-1=\frac{13}{10^8-7}\)
Hiển nhiên $10^7-8< 10^8-7$
$\Rightarrow \frac{13}{10^7-8}> \frac{13}{10^8-7}$
$\Rightarrow A-1> B-1\Rightarrow A> B$
so sánh
\(\frac{10^8+6}{10^8-7}\)
\(\frac{10^8+6}{10^8-7}\)
Cho \(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
So sánh S với 10
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
so sánh A và B
\(A=\frac{10^7+5}{10^7-8}\) và \(B=\frac{10^5+6}{10^5-7}\)
a=(10^7 -8 +13)/(10^7 - 8) = 1+ 13/(10^7 - 8)
b = (10^5 +6)/(10^5 -7) = (10^5-7+13)/(10^5 -7) = 1 + 13/(10^5-7)
vay b>a
So sánh các phân số:
a) A=\(\frac{10^7+5}{10^7-8}\) và B=\(\frac{10^8+6}{10^8-7}\)
b)A=\(\frac{10^{1992}+1}{10^{1991}+1}\) và B=\(\frac{10^{1993}+1}{10^{1992}+1}\)
c)\(\frac{n}{n+3}\) và \(\frac{n-1}{n+4}\)
a) ta có A=\(\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
B=\(\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì 10^7-8 <10^8-7 nên 1+ 13/10^7-8>1+13/10^8-7
Vậy A>B
Các bạn làm cả phần B và C có lời giải đi!!!
so sánh A và B :
a) A = \(\frac{20}{39}+\frac{22}{27}+\frac{18}{43}\) ; B = \(\frac{14}{39}+\frac{22}{29}+\frac{18}{41}\)
b) A = \(\frac{3}{8^3}+\frac{7}{8^4}\) , B= \(\frac{7}{8^3}+\frac{3}{8^4}\)
c) A = \(\frac{10^7+5}{10^7-8}\) , B = \(\frac{10^8+6}{10^8-7}\)
d) A = \(\frac{10^{1992}+1}{10^{1991}+1}\), B = \(\frac{10^{1933}+1}{10^{1992}+1}\)
b/ Ta có
\(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}\)
\(=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
c/ Đặt \(10^7=a\)thì ta có
\(A=\frac{a+5}{a-8};B=\frac{10a+6}{10a-7}\)
Giả sử A>B thì ta có
\(\frac{a+5}{a-8}>\frac{10a+6}{10a-7}\)
\(\Leftrightarrow10a^2+43a-35>10a^2-574a-348\)
\(\Leftrightarrow617a+313>0\)(đúng)
Vậy A>B
c/ Đặt \(10^{1991}=a\)thì ta có
\(A=\frac{10a+1}{a+1};B=\frac{100a+1}{10a+1}\)
Giả sử A>B thì ta có
\(\frac{10a+1}{a+1}>\frac{100a+1}{10a+1}\)
\(\Leftrightarrow\left(10a+1\right)^2>\left(100a+1\right)\left(a+1\right)\)
\(\Leftrightarrow-81a>0\)(sai)
Vậy A < B
a/ Thì quy đồng là ra nhé
a,b,c,d giống nhau cùng nhân A và B với 1 số nào đấy tách ra r` so sạmh
mọi người giúp tớ nhanh nhanh với nhé, 1 h tớ phải nộp rồi
So sánh
a)10^8/ 10^7 -1 và 10^7/ 10^6 -1
b)10^7 - 5/10^8+1 và 10^8 - 5/10^9 + 1
c)6n+7/3n-2 và 2n-1/n+4 (n thuộc N)
a) Ta có:
+) \(\frac{10^8}{10^7}\)-1= 108-7-1=10-1=9 (1)
+) \(\frac{10^7}{10^6}\)-1= 107-6-1=10-1=9 (2)
Từ (1) và (2) => \(\frac{10^8}{10^7}\)-1=\(\frac{10^7}{10^6}\)-1
Vậy..