Những câu hỏi liên quan
Xem chi tiết
NC
22 tháng 2 2019 lúc 22:43

Với n nguyên dương.

Đặt A=\(n^{2015}+n+1=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)

\(=n^2\left(\left(n^3\right)^{.671}-1\right)+\left(n^2+n+1\right)\)

Mà : \(\left(n^3\right)^{.671}-1⋮\left(n^3-1\right)\)

 và       \(n^3-1=\left(n-1\right)\left(n^2+n+1\right)\)

=> \(\left(n^3\right)^{671}-1⋮\left(n^2+n+1\right)\)

=> \(A⋮n^2+n+1\)

Theo bài ra: A là số nguyên tố

=> \(\orbr{\begin{cases}A=n^2+n+1\\n^2+n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n^{2015}=n^2\\n^2+n=0\end{cases}\Leftrightarrow}}\orbr{\begin{cases}n=1\left(tm\right)\\n=0;n=-1\left(loai\right)\end{cases}}\)vì n nguyên dương

Vậy n=1

Bình luận (0)
AM
Xem chi tiết
H24
7 tháng 5 2017 lúc 19:53

 n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố. 
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7. 
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số. 
=> số duy nhất thỏa mãn là n = 6

Bình luận (0)
HN
Xem chi tiết
H24
6 tháng 5 2017 lúc 17:14

 n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố. 
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7. 
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số. 
=> số duy nhất thỏa mãn là n = 6

**** mik nha

Bình luận (0)
H24
3 tháng 1 2024 lúc 20:35

n+1;n+5;n+7;n+13;n+17;n+25;n+37.

cách làm:

n+7=n+7.1

n+1=(n+1)+7.0

n+37=(n+2)+7.5

n+17=(n+3)+7.2

n+25=(n+40)+7.3

n+5=(n+5)+7.0

n+13=(n+6)+7.1

các số khi chia cho 7 sẽ có 7 số dư khác nhau

==>trong các số trên có ít nhất 1 số chia hết cho 7

các số ,n+7,n+13,n+17,n+25,n+37 đều lớn hơn 7 néu chúng chia hết cho 7 thì đó là các hợp số ==> loại

==>n+1 hoặc n+5 chia hết cho 7

+trường hợp 1

n+1=7==>n=6,khi đó các số đều là SNT 

trường hợp 2

n+5=7==>n=2 khi đó n+7=9 không phải là SNT nên loại vậy n=6

Bình luận (0)
H24
3 tháng 1 2024 lúc 21:19

hog phải chép mạng đâu nha tui tự làm mình viết hơi nhiều bạn thông cảm

Bình luận (0)
LP
Xem chi tiết
TQ
26 tháng 5 2023 lúc 17:01

loading...

Bình luận (0)
LP
25 tháng 5 2023 lúc 20:41

 Bạn ơi, nếu như vậy thì thầy mình sẽ bắt mình chứng minh là chỉ có 2 số 3 với 5 là 2 số có dạng \(2^n-1\) với \(2^n+1\) đó bạn. Nếu bạn không phiền thì chứng minh giúp mình với nhé. Mình cảm ơn bạn trước.

Bình luận (0)
FB
Xem chi tiết
H24
19 tháng 5 2021 lúc 10:38

Đặt \(p^n+144=a^2\left(a\in N\right)\)

\(\Rightarrow p^n=\left(a-12\right)\left(a+12\right)\)

Ta thấy : \(a-12+a+12=2a⋮2\)

\(\Rightarrow\left(a-12\right)\left(a+12\right)⋮2\)

\(\Rightarrow p^n⋮2\) mà $p$ nguyên tố \(\Rightarrow p=2\)

Khi đó ta có : \(2^n=\left(a-12\right)\left(a+12\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2^x=a-12\\2^y=a+12\end{matrix}\right.\) với $x+y=a; x,y \in N$,  \(y>x\)

\(\Rightarrow2^y-2^x=24\Rightarrow2^x\left(2^{y-x}-1\right)=24\)

Rồi bạn xét các TH để tìm ra giá trị đề bài nhé! Đến đây dễ rồi.

Bình luận (0)
Xem chi tiết
NN
2 tháng 5 2019 lúc 11:22

6" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">>2" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">n=2" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">n+7=9" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">n=4" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">n+5=9" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">n=6" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">7" role="presentation" style="border:0px; color:rgb(40, 40, 40); direction:ltr; display:inline-block; float:none; font-family:helvea,arial,sans-serif; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap" class="MathJax_CHTML mjx-chtml">7" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml"> số đã cho có  số chia hết cho . Thật thế  số đã cho khi chia cho  có cùng số dư với  số  mà trong  số tự nhiên liên tiếp có  số chia hết cho .
 Với  trong  số đã cho có  số chia hết cho  và  nên là hợp số.
⇒" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml"> Số duy nhất thỏa mãn là  

Xem thêm tại đây nhé bạn : Tìm số n nguyên dương sao cho tất cả các số n+1;n+5;n+7;n+13;n+17;n+25;n+37 đều là số nguyên tố - Số học - Diễn đàn Toán học

Bình luận (0)
KN
2 tháng 5 2019 lúc 11:29

Ta thấy: n phải là số chẵn vì trong dãy có phần dư của n là số lẻ (nếu là số lẻ thì các số trên chẵn ra hợp số)

Mà số nguyên tố chẵn duy nhất là 2 nên n = 2

Thay n = 2, ta có: n + 7 = 2 + 7 = 9 (loại vì là hợp số)

+) Với n = 4

Ta có: n + 5 = 4 + 5 = 9 (loại vì là hợp số)

+) Với n = 6

Với n = 6 thì tất cả các số trên đều là số nguyên tố (tm)

Theo nguyên lí Dirichle thì trong một phép chia cho 7 thì có nhiều nhất 6 số dư

Vậy ta dễ chứng minh để loại hết các số lớn hơn 6

Vậy n = 6 là nghiệm duy nhất cần tìm.

Bình luận (0)
TT
Xem chi tiết
PQ
Xem chi tiết
NG
Xem chi tiết