Những câu hỏi liên quan
ND
Xem chi tiết
DH
22 tháng 5 2018 lúc 20:47

Ta có : 

\(\left(x-y\right)^3\) cùng tính chất chẵn lẻ với \(x-y\)

\(\left(y-z\right)^2\)cùng tính chất chẵn lẻ với \(y-z\)

\(2015\left|x-z\right|\) cùng tính chất chẵn lẻ với  \(x-z\)

\(\Rightarrow\left(x-y\right)^3+\left(y-z\right)^2+2015\left|x-z\right|\) cùng tính chất chẵn lẻ với  \(x-y+y-z+z-x=0\)

là số chẵn

\(\Rightarrow\left(x-y\right)^3+\left(y-z\right)^2+2015\left|x-z\right|\) chẵn . Mà \(2017\) lẻ

\(\Rightarrow\) không tồn tại số nguyên dương x;y;z nào thỏa mãn

Bình luận (0)
NT
Xem chi tiết
JB
Xem chi tiết
BB
12 tháng 2 2019 lúc 19:42

bạn làm dc chưa

Bình luận (0)
PL
Xem chi tiết
DL
16 tháng 3 2017 lúc 20:21

chưa học nên ko biết

Bình luận (0)
HD
27 tháng 11 2024 lúc 22:43

Ngáo đá

Bình luận (0)
NK
Xem chi tiết
AN
10 tháng 3 2017 lúc 9:42

Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)

Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có

\(a^3+b^2+2015|a+b|=2017\)

+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.

Bình luận (0)
SQ
9 tháng 3 2017 lúc 20:11

mình chưa học

Bình luận (0)
H24
9 tháng 3 2017 lúc 21:13

tớ không biết

Bình luận (0)
PL
Xem chi tiết
NA
Xem chi tiết
IN
24 tháng 2 2020 lúc 23:11

  Ta có: \(x^3+y^3+z^3=x+y+z+2017\left(1\right)\)

\(\implies\) \(\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2017\)

chứng minh được :                                                    

       \(x^3-x=x.\left(x^2-1\right)=x.\left(x-1\right).\left(x+1\right)\)

       \(y^3-y=y.\left(y^2-1\right)=y.\left(y-1\right).\left(y+1\right)\)

        \(z^3-z=z.\left(z^2-1\right)=z.\left(z-1\right).\left(z+1\right)\)

   Vì x,y,z là các số nguyên nên:

\(x.\left(x-1\right).\left(x+1\right);y.\left(y-1\right).\left(y+1\right);z.\left(z-1\right).\left(z+1\right)\) là tích của ba số nguyên liên tiếp nên chia hết cho 3

   Do đó vế trái của (1) luôn chia hết cho 3 , mà 2017 không chia hết cho 3 

Vậy không có các số nguyên x,y,z thỏa mãn yêu cầu bài toán 

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết
TA
Xem chi tiết