Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TN
Xem chi tiết
DH
8 tháng 10 2021 lúc 9:21

a) Đặt \(\left(3n+4,5n+7\right)=d\).

Suy ra \(\hept{\begin{cases}3n+4⋮d\\5n+7⋮d\end{cases}}\Rightarrow3\left(5n+7\right)-5\left(3n+4\right)=1⋮d\Rightarrow d=1\).

Suy ra đpcm. 

b) Đặt \(\left(4n-7,5n-9\right)=d\).

Suy ra \(\hept{\begin{cases}4n-7⋮d\\5n-9⋮d\end{cases}}\Rightarrow5\left(4n-7\right)-4\left(5n-9\right)=1⋮d\Rightarrow d=1\).

Suy ra đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
HL
Xem chi tiết
MH
12 tháng 3 2023 lúc 21:11

Gọi \(d=\left(3n-2,4n-3\right)\)

=> \(\left\{{}\begin{matrix}3n-2⋮d\\4n-3⋮d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}12n-8⋮d\\12n-9⋮d\end{matrix}\right.\)

=> \(12n-8-\left(12n-9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

=> phân số \(\dfrac{3n-2}{4n-3}\) là phân số tối giản

Bình luận (0)
TY
Xem chi tiết
TN
28 tháng 7 2017 lúc 9:52

a) Gọi \(d=ƯCLN\left(2n+1;4n+5\right)\)

\(\Leftrightarrow\hept{\begin{cases}2n+1⋮d\\4n+5⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4n+2⋮d\\4n+5⋮d\end{cases}}\)

\(\Leftrightarrow3⋮d\)

Vì \(d\in N;3⋮d\Leftrightarrow d=1;3\)

Ok đề sai!

Bình luận (0)
NT
28 tháng 7 2017 lúc 14:51

dfakdfgaewtrywiesfgggggggggggggggguououououououououououououoatuaewbgggggggggggggggggaaaaaaaaaaaaaaaafhhhhhhhhhhhhhhhhhaooooooooooooooooooofhhhhhhhhhhhhhhhhhhoaaaaaaaaaaaaaaaaaaaaaaafhhhhhhhhhhhhhhaoooooooooooooooohffffffoaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Bình luận (0)
CA
Xem chi tiết
DH
14 tháng 5 2021 lúc 16:01

Đặt \(d=\left(n+1,3n+2\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
DH
14 tháng 5 2021 lúc 16:02

Đặt \(d=\left(2n+1,4n+3\right)\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
DH
14 tháng 5 2021 lúc 16:03

Đặt \(d=\left(4n+1,12n+7\right)\).

Suy ra \(\hept{\begin{cases}4n+1⋮d\\12n+7⋮d\end{cases}}\Rightarrow\left(12n+7\right)-3\left(4n+1\right)=4⋮d\Rightarrow4n⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
27 tháng 4 2017 lúc 14:51

Hướng dẫn giải:

Gọi d là ƯCLN của 3n - 2 và 4n - 3

⇒ (3n - 2)⋮ d và (4n - 3)⋮ d

⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d

⇒ d = 1 hoặc d = -1 

Vậy phân thức đã cho tối giản với ∀n ∈ N

Bình luận (0)
PB
Xem chi tiết
CT
31 tháng 12 2019 lúc 8:52

Hướng dẫn giải:

Gọi d là ƯCLN của 3n - 2 và 4n - 3

⇒ (3n - 2)⋮ d và (4n - 3)⋮ d

⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d

⇒ d = 1 hoặc d = -1 

Vậy phân thức đã cho tối giản với ∀n ∈ N

Bình luận (0)
V
Xem chi tiết
HB
22 tháng 2 2018 lúc 18:00

a, \(\frac{3n-2}{4n-3}\) 

Gọi ƯCLN ( 3n - 2 ; 4n - 3 ) là d .

\(\Rightarrow\) 3n - 2 ⋮ d

          4n - 3 ⋮ d 

\(\Rightarrow\) 4n - 3 + 3n - 2 ⋮ d

\(\Rightarrow\)( 12n - 9 )+ ( 12n - 8 ) ⋮ d

\(\Rightarrow\) ( 12n - 12n ) + ( 9 - 8 ) ⋮ d

\(\Rightarrow\) 1 ⋮ d

\(\Rightarrow\) d = 1 .

\(\Rightarrow\) 4n - 3 và 3n - 2 là hai số nguyên tố cùng nhau . 

Vậy \(\frac{3n-2}{4n-3}\) là phân số tối giản .

b, \(\frac{4n+1}{6n+1}\) 

Gọi  ƯCLN ( 4n + 1 ; 6n + 1 ) là d .

\(\Rightarrow\) 4n + 1 ⋮ d 

         6n + 1 ⋮ d

\(\Rightarrow\) 4n + 1 - 6n + 1 ⋮ d

\(\Rightarrow\) ( 12n + 3 ) - ( 12n + 2 ) ⋮ d.

.\(\Rightarrow\) ( 12n - 12n ) + ( 3 - 2 ) ⋮ d

\(\Rightarrow\) 1 ⋮ d

\(\Rightarrow\) d = 1

\(\Rightarrow\) 4n + 1 và 6n + 1 là hai số nguyên tố cùng nhau .

Vậy \(\frac{4n+1}{6n+1}\) là phân số tối giản .

:)

Chúc bạn học tốt !

Bình luận (0)
CG
22 tháng 2 2018 lúc 17:06

a) Để phân số \(\frac{3n-2}{4n-3}\)là phân số tối giản 

=> ƯCLN ( 3n - 2 ; 4n - 3 ) = 1

Gọi ƯCLN ( 3n - 2 ; 4n - 3 ) = d

=> 3n - 2 \(⋮\)d và 4n - 3 \(⋮\)d ( 1 )

Từ ( 1 ) 

=> 4 . ( 3n - 2 )  \(⋮\)d và 3 . ( 4n - 3 )  \(⋮\)

=> 12n - 8  \(⋮\)d và 12n - 9  \(⋮\)d  ( 2 )

Từ ( 2 )

=> ( 12n - 9 ) - ( 12n - 8 )  \(⋮\)

=> 1  \(⋮\)

=> d \(\in\)Ư ( 1 )

=> d = 1

=>  Phân số \(\frac{3n-2}{4n-3}\)là phân số tối giản với mọi n \(\in\)\(ℕ^∗\)

Bình luận (0)
NQ
19 tháng 4 2020 lúc 8:51

chưa học

Bình luận (0)
 Khách vãng lai đã xóa
KT
Xem chi tiết
H24
14 tháng 4 2019 lúc 9:16

Bạn chọn vào câu tương tự của bạn trên OLM sẽ có bài tham khảo nha

=))) Mong bạn hiểu

Mik chưa bt làm nên cho bn coi bài của ngta =))

Bình luận (0)
XO
14 tháng 4 2019 lúc 9:57

a) Gọi (3n-2,4n-3) = d

=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\)=>\(\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

=>\(\left(12n-8\right)-\left(12n-9\right)⋮d\)

=>\(1⋮d\)

=>\(d=1\)=>\(\frac{3n-2}{4n-3}\)là phân số tối giản

b) Gọi  (4n+1,6n+1) = d

=>\(\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}}\)=>\(\hept{\begin{cases}3\left(4n+1\right)⋮d\\2\left(6n+1\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}12n+3⋮d\\12n+2⋮d\end{cases}}\)

=> \(\left(12n+3\right)-\left(12n+2\right)⋮d\)

=> \(1⋮d\)

=> \(d=1\)

=> \(\frac{4n+1}{6n+1}\)là phân số tối giản

Bình luận (0)