Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TN
Xem chi tiết
ND
8 tháng 4 2016 lúc 21:48

Ta có:

B=1+9^100+94^100+1994^100

B=1+...1+...6+...6

B=...2

=>B có chữ số tận cùng là 2

=> B không phải số chính phương

Vậy...

Bình luận (0)
TT
12 tháng 12 2017 lúc 21:41

Tao là ai sai rồi:nếu B=1+...1+...6+...6 thì B phải bằng ...4 chứ

Bình luận (0)
TH
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
VC
27 tháng 12 2017 lúc 12:56

ta có \(94^{100}⋮4;1994^{100}⋮4\)

mà \(9\equiv1\left(mod4\right)\Rightarrow9^{100}\equiv1\left(mod4\right)\Rightarrow9^{100}+1\equiv2\left(mod4\right)\)

=>\(B\equiv2\left(mod4\right)\Rightarrow B\) không là số chính phương 

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
AH
11 tháng 8 2021 lúc 17:41

Lời giải:
Đặt $2021=a$ thì:
$A=a^2+(a+1)^2+(a+2)^2+(a+3)^2$
$=4a^2+12a+14=(2a+3)^2+5=4045^2+5$ chia hết cho $25$ nhưng không chia hết cho $5$

Do đó $A$ không là số chính phương 

-----------------------

$9\equiv 1\pmod 4\Rightarrow 9^{100}\equiv 1\pmod 4$

$94^{100}\equiv 0\pmod 4$

$1994^{100}\equiv 0\pmod 4$

$\Rightarrow B\equiv 1+1+0+1\equiv 2\pmod 4$

Một scp không thể chia 4 dư 2 nên $B$ không là scp

---------------

Công thức $1^3+2^3+...+n^3=[\frac{n(n+1)}{2}]^2$ là scp nên $C$ là scp.

 

 

Bình luận (0)
XY
Xem chi tiết
KV
16 tháng 10 2018 lúc 11:48

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

c) Các số 19932,19942 là số chính phương không chia hết cho 3 nên chia cho 3 dư 1,còn 19922 chia hết cho 3.

Vậy  M chia cho 3 dư 2,không là số chính phương.

Các số 19922,19942 là số chính phương chẵn nên chia hết cho 4.

Các số 19932,19952 là số chính phương lẻ nên chia cho 4 dư 1.

Vậy số N chia cho 4 dư 2,không là số chính phương.

Bình luận (0)
NH
Xem chi tiết
H24
Xem chi tiết