Những câu hỏi liên quan
PD
Xem chi tiết
NM
10 tháng 12 2021 lúc 7:05

\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)

Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)

Do đó \(x\in\left\{1;2\right\}\)

Bình luận (0)
NM
10 tháng 12 2021 lúc 7:07

\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)

Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)

Vậy PT có nghiệm \(x=4\)

Bình luận (0)
DD
Xem chi tiết
2T
22 tháng 8 2019 lúc 20:51

\(\sqrt{x^2+4}-2\sqrt{x+2}=0\)

\(\Leftrightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)

\(\Leftrightarrow\sqrt{x^2+4}=\sqrt{4x+8}\)

\(\Leftrightarrow\sqrt{x^2+4}^2=\sqrt{4x+8}^2\)

\(\Leftrightarrow x^2+4=4x+8\)

\(\Leftrightarrow x^2-4x-4=0\)

\(\Delta=\left(-4\right)^2-4.1.\left(-4\right)=16+16=32\)

Vậy \(x_1=\frac{4+\sqrt{32}}{2}\);\(x_2=\frac{4-\sqrt{32}}{2}\)

P/S: Ko chắc

Bình luận (0)
CC
22 tháng 8 2019 lúc 20:52

\(\sqrt{x^2+4}-2\sqrt{x+2}=0.\)

\(\Rightarrow\sqrt{x^2+4}=2\sqrt{x+2}\)

\(\Rightarrow x^2+4=2x+4\)

\(\Rightarrow x^2+4-2x-4=0.\)

\(\Rightarrow x^2-2x=0\)

\(\Rightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

Vậy .............

Study well 

Bình luận (0)
2T
22 tháng 8 2019 lúc 20:53

chuyên toán thcsKhông biết bình phương à

Bình luận (0)
NL
Xem chi tiết
DD
1 tháng 10 2016 lúc 20:46

\(\sqrt{x-9-6\sqrt{x-9}+9}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-9}-3\right)^2}=2\)

\(\sqrt{x-9}=5\Rightarrow x-9=25\Rightarrow x=34\)

Bình luận (0)
NK
1 tháng 10 2016 lúc 20:52

Điều kiện :x>9 phương trình <=> \(x-6\sqrt{x-9}=4=>x-6\sqrt{x-9}=4=>\left(x-9\right)-6\sqrt{x-9}+9=4=>\left(\sqrt{x-9}-3\right)^2=4\)

=>\(\orbr{\begin{cases}\sqrt{x-9}-3=-2\\\sqrt{x-9}-3=2\end{cases}=>\orbr{\begin{cases}\sqrt{x-9}=1\\\sqrt{x-9=5}\end{cases}=>\orbr{\begin{cases}x=10\\x=34\end{cases}}}}\)

Bình luận (0)
NL
1 tháng 10 2016 lúc 21:03

câu trả lời của Nguyễn Trọng Kiên hình như sai rùi . Nó ra có 1 trường hợp là:

=>\(\hept{\begin{cases}5>0\\x-9=25\end{cases}}\)

ra vậy mới đúng chứ

Bình luận (0)
H24
Xem chi tiết
TN
9 tháng 7 2017 lúc 17:07

Đk: tự xác định

\(pt\Leftrightarrow\sqrt{x+3}-\left(\frac{1}{3}x+1\right)+\sqrt{6-x}-\left(-\frac{1}{3}x+2\right)-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)

\(\Leftrightarrow\frac{x+3-\left(\frac{1}{3}x+1\right)^2}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{6-x-\left(-\frac{1}{3}x+2\right)^2}{\sqrt{6-x}-\frac{1}{3}x+2}-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)

\(\Leftrightarrow\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{\left(x+3\right)\left(x-6\right)}{\sqrt{-\left(x+3\right)\left(x-6\right)}}=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-6\right)\left(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}\right)=0\)

Dễ thấy:\(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}< 0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-6=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=6\end{cases}}\)

Bình luận (0)
NT
Xem chi tiết
H24
26 tháng 9 2016 lúc 22:42

\(2x+\left|x-\frac{1}{2}\right|=2\)

Bình luận (0)
AN
26 tháng 9 2016 lúc 22:45

Điều kiện x \(\ge\frac{1}{4}\)

Đặt a = \(\sqrt{x-\frac{1}{4}}\)(a \(\ge0\))

=> x = a2 + \(\frac{1}{4}\)

=> PT <=> 2a2 + \(\frac{1}{2}\)\(\sqrt{a^2+\frac{1}{4}+a}\)= 2

<=> \(\sqrt{a^2+\frac{1}{4}+a}\)\(\frac{3}{2}-2a\)

<=> a2 + 0,25 + a = 4a4 + 2,25 - 6a2

<=> 4a4 - 7a2 - a + 2 = 0

<=> (a + 1)(2a - 1)(2a2 - a - 2) = 0

<=> a = 0,5

<=> x = 0,5

Bình luận (0)
NA
Xem chi tiết
NM
18 tháng 9 2016 lúc 16:09

a,4\(\sqrt{x+1}\) -3\(\sqrt{x+1}\) =4 suy ra \(\sqrt{x+1}=4\)suy ra x+1=16 và x=15

b. tương tự phần a suy ra \(5\sqrt{x+1}=\sqrt{x-1}\)suy ra \(^{25\left(x+1\right)=x-1}\)suy ra 24x=-26 suy ra x=\(\frac{-13}{12}\)(ko thỏa mãn đk) nên vô nghiệm

Bình luận (0)
CN
Xem chi tiết
AN
25 tháng 7 2017 lúc 21:18

Đúng thì làm vậy.

Ta có:

\(\sqrt[3]{x-y}=\sqrt{x-y}\)

\(\Leftrightarrow\sqrt[3]{x-y}\left(1-\sqrt[6]{x-y}\right)=0\)

Dễ thấy x = y không phải là nghiệm

\(\Rightarrow1=\sqrt[6]{x-y}\)

\(\Leftrightarrow1=x-y\)

\(\Leftrightarrow x=1+y\)

Thế vô PT còn lại ta được

\(\sqrt[3]{2y+1}=\sqrt{2y-3}\)

\(\Leftrightarrow\left(2y+1\right)^2=\left(2y-3\right)^3\)

\(\Leftrightarrow8y^3-40y^2+50y-28=0\)

\(\Leftrightarrow2\left(2y-7\right)\left(2y^2-3y+2\right)=0\)

\(\Leftrightarrow y=\frac{7}{2}\)

\(\Rightarrow x=\frac{9}{2}\)

Bình luận (0)
AN
25 tháng 7 2017 lúc 15:36

Xem lại đề nhé

Bình luận (0)
CN
25 tháng 7 2017 lúc 20:45

de dung nhu vay day ban a

Bình luận (0)
KN
Xem chi tiết
PN
6 tháng 8 2020 lúc 15:25

\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(đk:x\ge11\right)\)

Đặt \(\sqrt{x-11}=t\left(t\ge0\right)\)Khi đó pt trở thành :

\(\sqrt{x+t}+\sqrt{x-t}=4\)

\(< =>x+t+x-t+2\sqrt{x^2-t^2}=4\)

\(< =>2x+2\sqrt{x^2-x-11}=4\)

\(< =>x+\sqrt{x^2-x-11}=4\)

\(< =>x^2-x-11=\left(4-x\right)^2\)

\(< =>x^2-x-11=16-8x+x^2\)

\(< =>x^2-x-11-16+8x-x^2=0\)

\(< =>7x-27=0< =>x=\frac{27}{7}\left(ktmđk\right)\)

Vậy phương trình trên vô nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
KN
6 tháng 8 2020 lúc 15:38

Chỗ \(2x+2\sqrt{x^2-x-11}\)=4

suy ra \(x+\sqrt{x^2-x-11}\)=2 chứ sao bằng 4 bạn

tới đó thì mình làm được rồi cảm ơn bạn

Bình luận (0)
 Khách vãng lai đã xóa
PN
6 tháng 8 2020 lúc 15:45

À bạn thay cho mình chỗ đó nhé , cả về sau nữa , mình mới lớp 7 nên hơi gà

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TN
9 tháng 9 2017 lúc 11:28

CÁi  này easy mà .-.

\(\frac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)

\(\Leftrightarrow\frac{\frac{\left(7-x\right)-\left(x-5\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)

\(\Leftrightarrow\frac{\frac{-2\left(x-6\right)}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(\frac{\frac{-2}{\left(\sqrt[3]{7-x}\right)^2+\left(\sqrt[3]{x-5}\right)^2+\sqrt[3]{7-x}\sqrt[3]{x-5}}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}+1\right)=0\)

\(\Rightarrow x-6=0\Rightarrow x=6\)

Bình luận (0)