\(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\frac{-9}{2}+\frac{1}{7}.\frac{-9}{10}\)
Tính nhanh :
\(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(-\frac{9}{2}\right)+\frac{1}{7}.\left(-\frac{9}{10}\right)\)
\(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\frac{-9}{10}\)
\(=\frac{-9}{10}.\frac{5}{14}+\frac{1}{7}.\frac{-9}{10}+\frac{1}{10}.\left(\frac{-9}{2}\right)\)
\(=\frac{-9}{10}.\left(\frac{5}{14}+\frac{1}{7}\right)+\frac{1}{10}.\left(\frac{-9}{2}\right)\)
\(=\frac{-9}{10}.\frac{1}{2}+\frac{1}{10}.\left(\frac{-9}{2}\right)\)
\(=\left(\frac{-9}{10}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-9}{10}+\frac{5}{10}\right)^2\)
\(=\left(\frac{-2}{5}\right)^2\)
\(=\frac{4}{25}\)
-Chào bạn Bùi Quang Sang!
-Mình là Chuyên gia về Toán và mình sẽ giải giúp bạn câu này,mong bạn ủng hộ!
Ta có: \(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\left(\frac{-9}{10}\right)=\frac{-9}{10}.\left(\frac{5}{14}+\frac{1}{2}+\frac{1}{7}\right)\)
\(=\frac{-9}{10}.1=\frac{-9}{10}\)
*Đây là bài toán ngắn gọn nhất mình có thể làm,nếu bạn không hiểu thì mình có 2 ý kiến cho bạn:
+) Bạn hãy làm ra chi tiết theo bài trên.
+) Nếu bạn vẫn chưa hiểu khi làm theo lời khuyên trên hãy đọc lại và ôn tập lại kiến thức.
Chúc bạn học tốt! :D
Tính nhanh
\(\frac{-9}{10}\).\(\frac{5}{14}+\frac{1}{10}.\frac{-9}{2}\)+ \(\frac{1}{7}.\frac{-9}{2}\)
\(=\frac{-9}{2}.\frac{5}{70}+\frac{1}{10}.\frac{-9}{2}+\frac{1}{7}.\frac{-9}{2}\Rightarrow\)\(\frac{-9}{2}.\left(\frac{5}{70}+\frac{1}{10}+\frac{1}{7}\right)\Rightarrow\frac{-9}{2}.\frac{11}{35}=\frac{-99}{70}\)
cái bạn bí mật nhé đã chép sai đề bài rồi
\(A=\left\{\frac{1999}{2011}-\frac{2011}{1999}\right\}-\left\{\frac{-12}{1999}-\frac{12}{2011}\right\}\)
\(B=\frac{2}{5}+\left(\frac{3}{11}+\frac{-2}{5}\right)\)
\(C=\frac{-5}{7}.\frac{4}{13}+\frac{-5}{7}.\frac{9}{13}+\frac{-2}{7}\)
\(D=\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\left(\frac{-9}{10}\right)\)
Bài 1: Thực hiện phép tính
\(\frac{\frac{1}{4}+\frac{3}{7}-\frac{4}{5}}{0,75+\frac{9}{7}-2\frac{2}{5}}+\frac{\frac{3}{14}-\frac{2}{10}+\frac{5}{18}+\frac{7}{66}}{\frac{6}{7}-\frac{4}{5}+\frac{10}{9}+\frac{14}{13}}\)
Vừa thi về, giải đc ùi nhưng muốn xem k quả của các bạn
Mình làm như thế này nek
\(\frac{\frac{1}{4}+\frac{3}{7}-\frac{4}{5}}{0,75+\frac{9}{7}-2\frac{2}{5}}+\frac{\frac{3}{14}-\frac{2}{10}+\frac{5}{18}+\frac{7}{66}}{\frac{6}{7}-\frac{4}{5}+\frac{10}{9}+\frac{14}{33}}\)
\(=\frac{\frac{1}{4}+\frac{3}{7}-\frac{4}{5}}{\frac{2}{4}+\frac{9}{7}-\frac{12}{5}}+\frac{\frac{1}{2}\cdot\left(\frac{3}{7}-\frac{2}{5}+\frac{5}{9}+\frac{7}{33}\right)}{2\cdot\left(\frac{3}{7}-\frac{2}{5}+\frac{5}{9}+\frac{7}{33}\right)}\)
\(=\frac{\frac{1}{4}+\frac{3}{7}-\frac{4}{5}}{3\cdot\left(\frac{1}{4}+\frac{3}{7}-\frac{4}{5}\right)}+\frac{\frac{1}{2}}{2}\)
\(=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
tính giá trị biểu thức
\(\left(\frac{17}{10}+7-8,7\right):\left(\frac{23}{4}-\frac{11}{2}+\frac{9}{25}\right)x\left(12,98x0,25\right)+12,5\)
\(1\frac{2}{24}x5\frac{2}{5}x2x3\frac{7}{9}x2x\frac{2}{17}\)
\(2\frac{2}{17}x1\frac{1}{24}x5\frac{2}{5}x3\frac{7}{9}x2\)
\(3x\left(\frac{1}{7}+\frac{1}{3}-\frac{3}{14}\right):\frac{11}{14}\)
\(\left(1\frac{3}{2}+2\frac{1}{5}\right)x1\frac{1}{10}+\left(1\frac{7}{10}-\frac{4}{5}\right):\frac{3}{7}\)
\(\frac{10+\frac{9}{2}+\frac{8}{3}+\frac{7}{4}+ \frac{6}{5}+\frac{5}{6}+\frac{4}{7}+\frac{3}{8}+\frac{2}{9}+\frac{1}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}+\frac{1}{11}}\)
So sánh:
a)\(\frac{7^{15}}{1+7+7^2+...+7^{14}}\) và \(\frac{9^{15}}{1+9+9^2+...+9^{14}}\)
b) \(\frac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)và \(\frac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)
Đặt \(B=1+7+7^2+...+7^{14}\)
\(\Rightarrow7B=7+7^2+...+7^{15}\)
\(\Rightarrow7B-B=6B=7^{15}-1\)
\(\Rightarrow B=\frac{7^{15}-1}{6}\)
\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)
Tự làm tiếp nha
So sánh:
a)\(\frac{7^{15}}{1+7+7^2+...+7^{14}}\) và \(\frac{9^{15}}{1+9+9^2+...+9^{14}}\)
b) \(\frac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)và \(\frac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
b, Ta có:\(\dfrac{1+3+3^2+.....+3^{10}}{1+3+3^2+.....+3^9}\) \(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)\(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3.\left(1+3+3^2+...+3^9\right)}{1+3+3^2+...+3^9}\)
\(=\dfrac{1}{1+3+3^2+...+3^9}+3< 4\)
\(\Rightarrow\) \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< 4\) \(\left(1\right)\)
Ta có :\(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5+5^2+...+5^{10}}{1+5+5^2+....+5^9}\)
\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5.\left(1+5+5^2+...+5^9\right)}{1+5+5^2+...+5^9}\)
\(=\dfrac{1}{1+5+5^2+...+5^9}+5>5\)
\(\Rightarrow\) \(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}>5\) \(\left(2\right)\)
Từ \(\left(1\right)và\left(2\right)\)
\(\Rightarrow\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
Vậy \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)
a, Đặt \(A\)\(=\dfrac{7^{15}}{1+7+7^2+...+7^{14}}\)
\(\Rightarrow\) \(\dfrac{1}{A}\) \(=\dfrac{1+7+7^2+...+7^{14}}{7^{15}}=\dfrac{1}{7^{15}}+\dfrac{7}{7^{15}}+\dfrac{7^2}{7^{15}}+...+\dfrac{7^{14}}{7^{15}}\)
\(=\dfrac{1}{7^{15}}+\dfrac{1}{7^{14}}+\dfrac{1}{7^{13}}+....+\dfrac{1}{7}\)
Đặt \(B=\dfrac{9^{15}}{1+9+9^2+...+9^{14}}\)
\(\Rightarrow\dfrac{1}{B}=\dfrac{1+9+9^2+...+9^{14}}{9^{15}}=\dfrac{1}{9^{15}}+\dfrac{9}{9^{15}}+\dfrac{9^2}{9^{15}}+...+\dfrac{9^{14}}{9^{15}}\)
\(=\dfrac{1}{9^{15}}+\dfrac{1}{9^{14}}+\dfrac{1}{9^{13}}+...+\dfrac{1}{9}\)
Mà \(\dfrac{1}{7^{15}}>\dfrac{1}{9^{15}};\dfrac{1}{7^{14}}>\dfrac{1}{9^{14}};\dfrac{1}{7^{13}}>\dfrac{1}{9^{13}};....;\dfrac{1}{7}>\dfrac{1}{9}\)
\(\Rightarrow\dfrac{1}{A}>\dfrac{1}{B}\) \(\Rightarrow A< B\)
Vậy\(\dfrac{7^{15}}{1+7+7^2+...+7^{14}}>\dfrac{9^{15}}{1+9+9^2+....+9^{14}}\)
Mình sửa kết luận
Vậy\(\dfrac{7^{15}}{1+7+7^2+...+7^{14}}< \dfrac{9^{15}}{1+9+9^2+...+9^{14}}\)
Tính
P= \(\frac{\frac{6}{8}-\frac{6}{10}+\frac{6}{14}+\frac{6}{26}}{\frac{11}{4}+\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)
Q=\(\frac{\frac{9}{1}+\frac{8}{2}+.....+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+....+\frac{1}{10}}\)
Ta có :
\(P=\frac{\frac{6}{8}+\frac{6}{10}+\frac{6}{14}+\frac{6}{26}}{\frac{11}{4}+\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}\)
\(\Rightarrow P=\frac{\frac{3}{4}+\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{11\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}\)
\(\Rightarrow P=\frac{3\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{11\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}\)
\(\Rightarrow P=\frac{3}{11}\)
Vậy \(P=\frac{3}{11}\)
\(P=\frac{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}=\frac{3}{11}\)
đề bài của bn sai nên mk sửa luôn nha