Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DT
Xem chi tiết
ND
Xem chi tiết
ND
Xem chi tiết
LP
4 tháng 10 2023 lúc 16:42

2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

 Chứng minh thì bạn chỉ cần bung 2 vế ra là được.

 \(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

 Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).

 Do đó \(P⋮4\)

 

Bình luận (0)
NL
Xem chi tiết
DN
Xem chi tiết
NM
20 tháng 11 2021 lúc 11:08

Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)

\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)

Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)

Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)

Bình luận (0)
VH
Xem chi tiết
TT
16 tháng 4 2021 lúc 22:02

undefined

Bình luận (0)
AH
16 tháng 4 2021 lúc 22:20

Lời giải:

Đặt $f(x)=Q(x)(x+1)(x^2+1)+ax^2+bx+c$ trong đó $ax^2+bx+c$ là đa thức dư khi chia $f(x)$ cho $(x+1)(x^2+1)$

Ta có:

$f(x)=Q(x)(x+1)(x^2+1)+a(x^2-1)+b(x+1)+a-b+c$

$=(x+1)[Q(x)(x^2+1)+a(x-1)+b]+a-b+c$

Do đó $f(x)$ chia $x+1$ có dư là $a-b+c$

$\Rightarrow a-b+c=4(*)$

Lại có:

$f(x)=Q(x)(x+1)(x^2+1)+a(x^2+1)-a+bx+c$

$=(x^2+1)[Q(x)(x+1)+a]+bx+(c-a)$

$\Rightarrow f(x)$ khi chia $x^2+1$ có dư là $bx+(c-a)$

$\Rightarrow bx+(c-a)=2x+3$

$\Rightarrow b=2; c-a=3(**)$

Từ $(*);(**)\Rightarrow a=\frac{3}{2}; b=2; c=\frac{9}{2}$

Bình luận (2)
PT
Xem chi tiết
AH
31 tháng 3 2023 lúc 20:54

Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.

Theo bài ra ta có:

$f(2)=6067$

$f(-3)=-4043$

$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$

Cho $x=2$ thì:

$f(2)=0.Q(2)+2a+b=2a+b$

$\Leftrightarrow 6067=2a+b(1)$

Cho $x=-3$ thì:

$f(-3)=0.Q(-3)-3a+b=-3a+b$

$\Leftrightarrow -4043=-3a+b(2)$

Từ $(1); (2)\Rightarrow a=2022; b=2023$

Vậy đa thức dư là $2022x+2023$

Bình luận (0)
ND
Xem chi tiết
TL
Xem chi tiết
TK
Xem chi tiết