Tìm x,y thuộc \(ℤ\) biết : 25 \(-\) \(y^2=8\left(x-2015\right)^2\)
tìm x,y biết : \(25-y^2=8\left(x=2015\right)^2\)
Tìm \(x,y\) thuộc Z biết : \(25-y^2=8\left(x-2015\right)^2\)
Tìm x;y thuộc Z biết : 25-y^2=8*(x-2015)^2
Tìm \(x,y\in Z\) biết \(25-y^2=8\left(x-2015\right)^2\)
Tìm x,y thuộc N biết: \(25-y^2=8\left(x-2009\right)^2\)
Do \(8\left(x-2009\right)^2\ge0\Rightarrow25-y^2\ge0\)
\(\Leftrightarrow y^2\le25\).Mà \(y\inℕ\) nên \(0\le y^2\le25\Leftrightarrow0\le y\le5\)
Mà \(8\left(x-2009\right)^2⋮8\Rightarrow25-y^2⋮8\)
\(\Rightarrow y\in\left\{1;3;5\right\}\)
Thay vào tìm x. :) Nhớ đk: \(x,y\inℕ\)
Ta có: \(25-y^2=8.\left(x-2009\right)^2\)
\(\Rightarrow8.\left(x-2009\right)^2+y^2=25\left(1\right)\)
Vì \(y^2\ge0\)nên \(\left(x-2009\right)^2\le\frac{25}{8}\)
\(\Rightarrow\left(x-2009\right)^2=0\)hoặc \(\left(x-2009\right)^2=1\)
Với \(\left(x-2009\right)^2=1\)thay vào \(\left(1\right)\), ta có:
\(8.1+y^2=25\)
\(\Rightarrow8+y^2=25\)
\(\Rightarrow y^2=17\)( loại )
Với \(\left(x-2009\right)^2=0\)thay vào \(\left(1\right)\), ta có:
\(8.0+y^2=25\)
\(\Rightarrow0+y^2=25\)
\(\Rightarrow y^2=25\)
\(\Rightarrow\orbr{\begin{cases}y=5\\y=-5\end{cases}}\)
Mà \(y\in N\)
\(\Rightarrow y=5,x=2009\)
Vậy \(x=2009,y=5\)
Tìm x; y thuộc N biết:
\(25-y^2=8\cdot\left(x-2009\right)^2\)
Ta có: \(\left(x-2009\right)^2\ge0\)nên \(8\left(x-2009\right)^2\ge0\)
VP \(\ge0\)nên \(25-y^2\ge0\Leftrightarrow y^2\le25\)(1)
Mặt khác, do \(\left[8\left(x-2009\right)^2\right]⋮2\)nên \(\left(25-y^2\right)⋮2\)
\(\Leftrightarrow y^2\)lẻ \(\Leftrightarrow y\)lẻ (2)
Kết hợp (1), (2) và \(y\inℕ\),ta được: \(y\in\left\{1;3;5\right\}\)(suy ra từ \(y^2\in\left\{1;9;25\right\}\))
*Với y = 1 thì \(25-1^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=24\Leftrightarrow\left(x-2009\right)^2=3\)(loại)
*Với y = 3 thì \(25-3^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=16\Leftrightarrow\left(x-2009\right)^2=2\)(loại)
*Với y = 5 thì \(25-5^2=8\left(x-2009\right)^2\Leftrightarrow8\left(x-2009\right)^2=0\Leftrightarrow\left(x-2009\right)^2=0\)\(\Leftrightarrow x=2009\)
Vậy x = 5 và y = 2009.
Tìm x, y thuộc N biết rằng
25 - y^2 = 8(x - 2015)^2
tìm x,y thuộc N biết : \(25-y^2=8\left(x-2009\right)^2\)
Tìm x,y thuộc N biết \(25-y^2=8\left(x-2014\right)^2\)
Ta có: 25 - y2 = 8(x-2014)2
y2=25-8.(x-2014)2
Vì y2 là số dương và x,y thuộc N
=>(x-2014)2<=3
Xét (x-2014)2=0
=>x=2014
=>y=5
Xét (x-2014)2=1
=> x=2015 hoặc x=2013
Không tìm được y thỏa mãn
Vậy x=2014;y=5
Mk làm tắt đấy.Sai thì thôi nhé