Tìm GTLN của C= |4x-3| + |5y+7,5| +17,5
Tìm GTNN của biểu thức:
C=|4x - 3| + |5y+7,5|+17,5
D=|x-2001| + |x-2002|
a) /4x - 3/ + /5y+7,5/ >= 0
=> C>= 17,5
=> C min = 17,5 <=> 4x-3 = 0 và 5y + 7,5 =0 <=> x = 3/4 và y = -3/2
b) Áp dụng /A/ = /-A/
=> D = /x-2001/ + /2002-x/
Lại áp dụng /a/ + /b/ >= /a+b/
=> D>= /x-2001+2002-x/ = 1
=> D min = 1 <=> (x - 2001)(2002 - x) >= 0 <=> 2001 <= x <= 2002
Bài 2: tìm giá trị nhỏ nhất của biểu thức
a, A= 3,7 + | 4,3 - x |
b, B= | 3x + 8,4 | - 14
c, C= | 4x - 3 | + | 5y + 7,5 | + 17,5
d, D= | x - 2018 | + | x - 2017 |
Bài 2: tìm giá trị nhỏ nhất của biểu thức
a, A= 3,7 + | 4,3 - x |
b, B= | 3x + 8,4 | - 14
c, C= | 4x - 3 | + | 5y + 7,5 | + 17,5
d, D= | x - 2018 | + | x - 2017 |
Bài 2 :
a) \(A=3,7+\left|4,3-x\right|\ge3,7\)
Min A = 3,7 \(\Leftrightarrow x=4,3\)
b) \(B=\left|3x+8,4\right|-14\ge-14\)
Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)
c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)
d) \(D=\left|x-2018\right|+\left|x-2017\right|\)
\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)
Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)
\(\Leftrightarrow2017\le x\le2018\)
\(A=3,7+\left|4,3-x\right|\)
Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
\(B=\left|3x+8,4\right|-14\)
Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)
\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
\(D=\left|x-2018\right|+\left|x-2017\right|\)
\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có
\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)
Tìm GTNN của
\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
FgđNdkkgg
\(A=|4x-3|+|5y+7,5|+17,5\)
\(|4x-3|\ge0\)
\(|5y+7,5|\ge0\)
\(\Leftrightarrow|4x-3|+|5y+7,5|+17,5\ge17,5\)
Vậy \(MaxA=17,5\)khi \(\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
Ta có \(\left|4x-3\right|\ge0\)\(\forall x\)
\(\left|5y+7,5\right|\ge0\forall x\)
=> \(\left|4x-3\right|+\left|5y+7,5\right|\ge0\forall x,y\)
=>\(\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\forall x,y\)
hay \(A\ge17,5\)
\(MinA=17,5\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-\frac{3}{2}\end{cases}}\)
`Tìm GTNN của
\(B=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Tìm GTNN của
\(B=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
E=|4x-3|+|5y+7,5|+17,5
Tìm giá trị nhỏ nhất:
a) A= \(\left|3,4-x\right|+1,7\)
b) B= \(\left|x+48\right|3,5\)
c) C= \(\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
\(a,A=\left|3,4-x\right|+1,7\ge1,7\)
Dấu \("="\Leftrightarrow3,4-x=0\Leftrightarrow x=3,4\)
\(c,C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}4x-3=0\\5y+7,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-\dfrac{3}{2}\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của các biểu thức
A = | 4x-3 | + | 5y+7,5 | + 17,5
B = | x-2 | + | x-6 | + 2017
C = (2x+1)^2020 - 2019
\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta thấy \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\)
\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
\(\Rightarrow A\ge17,5\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
...
\(B=\left|x-2\right|+\left|x-6\right|+2017\)
\(=\left|x-2\right|+\left|6-x\right|+2017\)
Ta thấy \(\left|x-2\right|+\left|6-x\right|\ge\left|x-2+6-x\right|=4\)
\(\Rightarrow B\ge4+2017=2021\)
Dấu "=" xảy ra khi \(2\le x\le6\)
....
\(C=\left(2x+1\right)^{2020}-2019\)
Ta thấy \(\left(2x+1\right)^{2020}\ge0\)
\(\Rightarrow C=\left(2x+1\right)^{2020}-2019\ge-2019\)
Dấu "=" xảy ra khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
....
tìm giá trị nhỏ nhất của các biểu thức sau :
a) A= 3,7 + |4,3 - x|
b) B = |3x+8,4|-14,2
c) C = |4x-3|+|5y+7,5|+17,5