S=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+...+1/9^2, chứng minh 2/5<S<8/9
S=1/2^2+1/3^2+1/4^2+....+1/9^2.Chứng minh rằng 2/5 < S <8/9
cho : S = 1/2^2 + 1/3^2 + 1/4^2 + 1/5^2 +......+ 1/9^2 chứng minh rằng 2/5 < S < 8 / 9
Ta có S=1/2^2+1/3^2+1/4^2+...+1/9^2
<1/2²+1/2*3+1/3*4+....+1/8*9
=1/2²+1/2-1/3+1/3-1/4+....+1/8-1/9
=1/4+1/2-1/9=23/36<32/36=8/9 (♪)
Ta lại có S=1/2^2+1/3^2+1/4^2+...+1/9^2
>1/2²+1/3*4+1/4*5+....+1/9*10
=1/2²+1/3-1/4+1/4-1/5+........+1/9-1/10
=1/2²+1/3-1/10
=19/20>8/20=2/5 ( ♫)
Từ (♪)( ♫) cho ta đpcm
S=1/2^2 + 1/3^2 + 1/4^2 +...+ 1/9^2. Chứng minh rằng 2/5 < S <8/9
câu nào cũng trả lời.trốn học à
mình hỏi giúp bạn mình thôi
S=1/2^2 + 1/3^2 + 1/4^2 +...+ 1/9^2
Chứng minh: 2/5<S<8/9
\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2};...;\frac{1}{9\cdot9}< \frac{1}{8\cdot9}\)
\(\Rightarrow S=\frac{1}{2^2}+...+\frac{1}{9^2}< \frac{1}{1\cdot2}+...+\frac{1}{8\cdot9}=1-\frac{1}{2}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\left(1\right)\)
\(\frac{1}{2\cdot2}>\frac{1}{2\cdot3};...;\frac{1}{9\cdot9}>\frac{1}{9\cdot10}\)
\(\Rightarrow S=\frac{1}{2^2}+...+\frac{1}{9^2}>\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}=\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\left(2\right)\)
Từ (1)(2) => đpcm
S=1/2^2+1/3^2+1/4^2+....+1/9^2
chứng minh rằng:2/5<S<8/9
S<1/2^2 + 1/2.3 + 1/3.4 +...+ 1/8.9
S<1/4 + 1/2 - 1/3 + 1/3 - 1/4+...+1/8 - 1/9
S<1/4 + 1/2 - 1/9
S<23/36<8/9 (1)
Mặt khác: S>1/2^2 + 1/3.4 + ...+ 1/9*10
S>1/4 + 1/3 - 1/4 + ... + 1/9 - 1/10
S>1/4 + 1/3 - 1/10
S>29/60>2/5 (2)
Từ (1),(2)
=> 2/5<S<8/9
Cho S = 1/2^2 + 1/3^2 + 1/4^2 +...+ 1/9^2
chứng minh rằng 2/5 < S < 8/9
Chứng minh rằng: S=1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2+1/9^2+1/10^2 < 2
Giúp vs nha mấy bn ! Thanks!!!!!!!!!!!
Lời giải:
\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)
Dễ thấy:
\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(....\)
\(\dfrac{1}{10^2}=\dfrac{1}{10.10}< \dfrac{1}{9.10}\)
\(\Rightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(\Rightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Rightarrow S< 1+1-\dfrac{1}{10}\)
\(\Rightarrow S< 2-\dfrac{1}{10}\)
\(\Rightarrow S< 2\)
BÀI 3*
a.Cho S=1/31+1/32+1/33+...+1/60 . Chứng minh rằng 3/5<S<4/5
b. Cho M =1/2^2+1/3^2+1/4^2+...+1/9^2. Chứng minh rằng 2/5<S<8/9
CÁC BẠN GIÚP MÌNH VỚI
BẠN NÀO NHANH MÌNH TICK CHO!
Cho S=1/2+1/3+1/4+...+1/31+1/32 a) chứng minh rằng S>5/2 b) chứng minh rằng S<9/2
`Answer:`
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)
a) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)
b) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)
\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)
\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)
\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)
\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)