Những câu hỏi liên quan
PB
Xem chi tiết
CT
10 tháng 11 2018 lúc 2:15

Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.

Bình luận (0)
H24
Xem chi tiết
US
Xem chi tiết
DE
24 tháng 6 2019 lúc 12:31

trả lời 

xl a 

e chưa làm 

bài này

Bình luận (0)
H24
24 tháng 6 2019 lúc 12:33

Giả sử \(\sqrt{a}\) là số hữu tỉ thì \(\sqrt{a}\) viết được thành \(\sqrt{a}=\frac{m}{n}\) với m, n \(\in\) N, (n \(\ne\) 0) và ƯCLN (m, n) = 1

Do a không phải là số chính phương nên \(\frac{m}{n}\) không phải là số tự nhiên, do đó n > 1.

Ta có m2 = an2. Gọi p là một ước nguyên tố của n thì m2 \(⋮\)p, do đó m\(⋮\) p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1.

Vậy\(\sqrt{a}\) là số vô tỉ.

Bình luận (0)

Giả sử √a là số hữu tỉ thì √a viết được thành 

Do a không phải là số chính phương nên \(\frac{m}{n}\)không phải là số tự nhiên, do đó n > 1.

 

Ta có m2 = an2. Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.

 
Bình luận (0)
HA
Xem chi tiết
LP
15 tháng 10 2017 lúc 9:17

- Nếu n là số chẵn thì n.(n + 2017) chia hết cho 2 => n.(n + 2017) là số chẵn.

- Nếu n là số lẻ thì n + 2017 là số chẵn => n.(n + 2017) chia hết cho 2 => n.(n + 2017) là số chẵn.

Vậy n.(n + 2017) là số chẵn với mọi số tự nhiên n.

Bình luận (0)
MT
15 tháng 10 2017 lúc 9:18

Xét 2 trường hợp:

Nếu n lẻ thì n + 2017 sẽ là một số chẵn

Mà lẻ nhân chẵn sẽ cho 1 số chẵn nên n.(n+2017) chẵn

Nếu n chẵn thì n + 2017 sẽ là một số lẻ

Mà chẵn nhân lẻ sẽ cho 2 số chẵn nên n.(n + 2017 ) chẵn

Vậy với mọi số tự nhiên n thì n.(n+2017) chẵn

Nhớ k cho mình nhé! Thank you!!!

Bình luận (0)
DN
15 tháng 10 2017 lúc 9:21

ta có \(n\cdot\left(n+2017\right)\)

TH1: nếu \(n⋮̸2\)

\(n+2017⋮2\)

\(n\cdot\left(n+2017\right)⋮2\)

TH2: Nếu \(n⋮2\)

\(n\cdot\left(n+2017\right)⋮2\)

Vậy \(n\cdot\left(n+2017\right)\)là số chẵn với mọi số tự nhiên n

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
BD
2 tháng 1 2017 lúc 10:24

Gọi 4 số tự nhiên liên tiếp là n, n + 1, n + 2, n + 3 (n ∈ Z).
Ta có n(n + 1)(n + 2)(n + 3) + 1 = n(n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N.
Vậy n(n + 1)(n + 2)(n + 3) là số chính phương

Bình luận (0)
HN
2 tháng 1 2017 lúc 10:55

Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\left(n\in N\right)\)

Theo đề bài, ta có :

       \(n\cdot\left(n+1\right)\cdot\left(n+2\right)\cdot\left(n+3\right)+1\)

\(=\left[n\cdot\left(n+3\right)\right]\cdot\left[\left(n+1\right)\cdot\left(n+2\right)\right]\)

\(=\left[n^2+3n\right]\cdot\left[n^2+3n+2\right]+1\)( * )

Đặt \(n^2+3n=t\)thì ( * ) \(=t\cdot\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

Vậy tích của 4 số tự nhiên liên tiếp cộng cho 1 là số chính phương 

Bình luận (0)
SL
23 tháng 1 2018 lúc 17:19

Gọi 4 số tự nhiên liên tiếp đó là n, n + 1, n + 2, n + 3

Ta có: 

n(n + 1)(n + 2)(n + 3) + 1

= [n(n + 3)] . [(n + 1)(n + 2)] + 1

= (n2 + 3n) . [(n + 1).n + (n + 1).2] + 1

= (n2 + 3n) . (n2 + n + 2n + 2) + 1

= (n2 + 3n) . [(n2 + 3n) + 2] + 1

= (n2 + 3n)2 + 2(n2 + 3n).1 + 12

= (n2 + 3n + 1)2

=> n(n + 1)(n + 2)(n + 3) + 1 là số chính phương

Vậy tích của 4 số tự nhiên liên tiếp cộng với 1 là số chính phương.

Bình luận (0)
CM
Xem chi tiết
LC
14 tháng 3 2019 lúc 18:42

bạn học giỏi nhỉ

Bình luận (0)
VM
Xem chi tiết
LP
Xem chi tiết
TL
16 tháng 8 2017 lúc 13:46

Gọi d = ƯCLN ( 5n+6 ; n+1 )

=> \(5n+6⋮d;n+1⋮d\)

=> \(5n+6⋮d;5.\left(n+1\right)⋮d\)

=> \(5n+6⋮d;5n+5⋮d\)

=> \(\left(5n+6\right)-\left(5n+5\right)⋮d\)

=> \(5n+6-5n-5⋮d\)

=> \(1⋮d\)

=> \(d=1\)

=> ƯCLN ( 5n+6 ; n+1 )  = 1

=> 5n+6 và n+1 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n ( đpcm )

Vậy bài toán được chứng minh !

              Cbht ❤️

Bình luận (0)
NH
16 tháng 8 2017 lúc 13:50

Đặt ƯCLN(5n+6,n+1)=d

Ta có: \(n+1⋮d\Rightarrow5\left(n+1\right)⋮d\)\(\Rightarrow5n+5⋮d\)

                                                       mà: \(5n+6⋮d\)

\(\Rightarrow\left(5n+6\right)-\left(5n+5\right)⋮d\)

\(\Rightarrow1⋮d\)\(\Rightarrow d\in\)Ư(1)

Mà d lớn nhất=> d=1 =>ƯCLN(n+1,5n+6)=1 

=>. n+1 và 5n+6 là 2 số nguyên tố cùng nhau\(\forall n\in Z\)

Bình luận (0)
LP
16 tháng 8 2017 lúc 13:52

Gợi ý:

Gọi ƯCNL \('5n+6,n+1'=d\Rightarrow'5n+6'⋮d;'n+1'⋮d\)

Ta có, \(5n+6=5'n+1'+1\) 

Vì \(5'n+1'⋮d\) nên suy ra \(1⋮d\Rightarrow d=1\)

Vậy 5n + 6 và n + 1 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n 

Bình luận (0)