Những câu hỏi liên quan
TP
AR
8 tháng 2 2023 lúc 20:39

???

Bình luận (0)
H24
8 tháng 2 2023 lúc 20:58

bn ơi???

Bình luận (1)
H24
Xem chi tiết
H24
Xem chi tiết
GB
Xem chi tiết
LQ
Xem chi tiết
LD
Xem chi tiết
HM
Xem chi tiết
PC
6 tháng 3 2018 lúc 20:15

ban h cho minh di

Bình luận (0)
DH
12 tháng 7 2018 lúc 9:35

\(S=5\left(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{100^2}\right)\)Ta có :

 \(S< 5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=5\left(1-\frac{1}{100}\right)< 5\)

\(S>5\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{100.101}\right)=5\left(\frac{1}{2}-\frac{1}{101}\right)>2\)

\(\Rightarrow2< S< 5\)

Bình luận (0)
DB
Xem chi tiết
NK
Xem chi tiết
BH
23 tháng 3 2017 lúc 11:43

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\); ...; \(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

=> S < \(5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}< 5.1=5\)=> S<5

Lại có: \(\frac{1}{2^2}>\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)\(\frac{1}{3^2}>\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)\(\frac{1}{100^2}>\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)

=> \(S>5\left(\frac{1}{2}-\frac{1}{101}\right)=5.\frac{101-2}{2.101}=\frac{5.99}{2.101}~2,45\)=> S>2

Vậy 2 < S < 5 => Đpcm

Bình luận (0)