Tìm x và y là số tụ nhiên: x^2014 + 2013y= 2015
Cho ba số x,y,z khác 0 thỏa mãn: x2+y2+z2 =xy+yz+xz
Tính giá trị của A= (2015-2014x/y)(2014-2013y/z)(2013-2012z/x)
x2014+2013y=2015
Tìm các số tự nhiên x,y biết:
a, ( 2x2+1 ).( x-1 ).( x+ 2)\(\le\)0
b,x2016+ 2013y = 2015
Giúp mik vs nhé, thanks
Mik đang cần gấp có ai giúp mik với
Tìm các số tự nhiên x, y biết:
a)(2x2 + 1) . (x - 1) . (x + 2) _< 0
b)x2016 + 2013y = 2015
MK ĐANG CẦN GẤP CẢM ƠN TRƯỚC MẤY BẠN LÀM
a)Ta có:\(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\Rightarrow\left(x-1\right)\left(x+2\right)\le0\)(Do\(2x^2+1>0\)
suy ra x-1 và x+2 trái dấu
Mà x-1<x+2
\(\Rightarrow\hept{\begin{cases}x-1\le0\Rightarrow x\le1\\x+2\ge0\Rightarrow x\ge-2\end{cases}}\)
\(\Rightarrow-2\le x\le1\)
b)Ta có Nếu \(x\ge2\Rightarrow x^{2016}\ge2^{2016}>2015\left(L\right)\)
Do đó x<2 mà\(x\inℕ\)
\(\Rightarrow x\in\left\{0;1\right\}\)
Với x=0 thì y=2015/2013(Loại)
Với x=1 thì y=2014/2013(Loại)
Vậy...............
Bài giải
a, \(\left(2x^2+1\right)\left(x-1\right)\left(x+2\right)\le0\)
Do \(\left(2x^2+1\right)\ge0\)
Nên để tích trên bé hơn hoặc bằng 0 thì \(\left(x-1\right)\) và \(\left(x+2\right)\) trái dấu hoặc bằng 0
Mà \(x-1< x+2\)
\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+2\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}}\Rightarrow\text{ }-2\le x\le1\)
Mà \(x\in N\text{ }\Rightarrow\text{ }x\in\left\{0\text{ ; }1\right\}\)
1 Tìm các số nguyên x,y tm
x^2013+x^2014+2009^2015=y^2015+y^2016+2010^2016
2 tìm số tự nhiên x,y biết 7*(x-2015)^2=23-y^2
TÌM số tự nhiên x,y,z
(x+y)(y+z)(z+x)+1=2014 . 2015
giải phương trình x^2+xy-2012x-2013y-2014=0
tìm các số nguyên x,y thỏa mãn : x^2-2xy+2y^2-2x+6y+5=0
Ta có:
\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)
\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)
\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)
tìm x,y nguyên thỏa mãn:
x2+xy-2012x-2013y-2014=0
ta có: \(x^2+xy-2012x-2013y-2014=0.\)
\(\Leftrightarrow x\left(x+y\right)-2013\left(x+y\right)+x-2013=1\)
\(\Leftrightarrow\left(x+y\right)\left(x-2013\right)+x-2013=1\)
\(\Leftrightarrow\left(x-2013\right)\left(x+y+1\right)=1\)
mà x,y là các số nguyên nên
\(\orbr{\begin{cases}\hept{\begin{cases}x-2013=1\\x+y+1=1\end{cases}}\\\hept{\begin{cases}x-2013=-1\\x+y+1=-1\end{cases}}\end{cases}\Rightarrow\orbr{\begin{cases}\hept{\begin{cases}x=2014\\y=-2014\end{cases}}\\\hept{\begin{cases}x=2012\\y=-2012\end{cases}}\end{cases}}}\)
vậy (x;y)={ (2014;-2014) ;(2012;-2012)}
\(x^2+xy-2012x-2013y-2014=0\) \(0\)
\(\Leftrightarrow x\left(x+y\right)-2013x-2013y+x-2013-1=0\)
\(\Leftrightarrow x\left(x+y\right)-2013\left(x+y\right)+\left(x-2013\right)=1\)
\(\Leftrightarrow\left(x+y\right).\left(x-2013\right)+\left(x-2013\right)=1\)
\(\Leftrightarrow\left(x-2013\right).\left(x+y+1\right)=1\)
Mà x,y lại là số nguyên
Vậy \(\hept{\begin{cases}\left(x;y\right)=\left(2014;2014\right)\\\left(x;y\right)=\left(2012;2012\right)\end{cases}}\)
Trần HIPPO copy à ?
2. a)S=1-2+2^2-2^3+...........+2^2014 tính S.
b) So sánh: A=2^2013+3/2^2014+3 và B=2^2014+3/2^2015+3.
c) tìm các số tự nhiên a,b :a/3+b/4=a+b/3+4.
3. tìm các số tự nhiên x,y biết: (2^x+1) (2^x+2) (2^x+3) (2^x+4)-5^y=11879.