so sánh :\(\frac{n}{2n+3}\)và \(\frac{n+2}{2n+1}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1 : So sánh 2 biểu thức A và B,biết rằng :\(A=\frac{N}{N+1}+\frac{N+1}{N+2}\)
\(B=\frac{2n+1}{2n+3}\left(n\in Nsao\right)\)
(Giai = 2 cách)
Cách 1 :
Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)
\(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)
Cộng theo từng vế ( 1) và ( 2 ) ta được :
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)
VẬY \(A>B\)
CÁCH 2
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)
\(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)
VẬY A>B
Chúc bạn học tốt ( -_- )
SO SÁNH ;
\(\frac{n}{n+1}\)+ \(\frac{n+1}{n+2}\) và \(\frac{2n+1}{n+3}\) (n thuộc N*)
\(\frac{2n+1}{n+3}=\frac{n+n+1}{n+3}=\frac{n}{n+3}+\frac{n+1}{n+3}\)
Do: \(\frac{n}{n+3}< \frac{n}{n+1};\frac{n+1}{n+3}< \frac{n+1}{n+2}\Rightarrow\frac{n}{n+3}+\frac{n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\Rightarrow\frac{2n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\)
so sánh
a\(\frac{n}{n+1}\)và \(\frac{n+2}{n+3}\)
b \(\frac{n}{n+3}\)và \(\frac{n-1}{n+4}\)
c \(\frac{n}{2n+1}\)và\(\frac{3n+1}{6n+3}\)
a). n/n+1 < n+2/n+3
b). n/n+3 > n−1/n+4
c). n/2n+1 < 3n+1/6n+3
k mk nha
\(\frac{n}{n+1}< 1\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}=\frac{n+2}{n+3}\)
=>n/n+1<n+2/n+3
vậy........
b)\(\frac{n}{n+3}>\frac{n}{n+4}>\frac{n-1}{n+4}\Rightarrow\frac{n}{n+3}>\frac{n}{n+4}\)
vậy.....
c)\(\frac{n}{2n+1}=\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)
vậy.......
a) \(\frac{n}{n+1}=1-\frac{1}{n+1};\frac{n+2}{n+3}=1-\frac{1}{n+3}\)
Vì \(\frac{1}{n+1}>\frac{1}{n+3}\)=) \(1-\frac{1}{n+1}< 1-\frac{1}{n+3}\)
=) \(\frac{n}{n+1}< \frac{n+2}{n+3}\)
b) Áp dụng tính chất : Nếu \(\frac{a}{b}< 1\)=) \(\frac{a}{b}< \frac{a+m}{b+m}\)
Ta có : \(\frac{n-1}{n+4}< 1\)=) \(\frac{n-1}{n+4}< \frac{n-1+1}{n+4+1}=\frac{n}{n+5}< \frac{n}{n+3}\)
=) \(\frac{n-1}{n+4}< \frac{n}{n+3}\)
So sánh \(\frac{n}{2n+1}\)và \(\frac{3n+1}{6n+3}\)với n là số tự nhiên
Ta có:\(\frac{n}{2n+1}=\frac{3\cdot n}{3\cdot\left(2n+1\right)}\)
\(=\frac{3n}{6n+3}\)
Đến đây so sánh tử số.
Có \(\frac{n}{2n+1}=\frac{3n}{3\left(2n+1\right)}=\frac{3n}{6n+3}\)
Xét 2 mẫu của phân số: \(6n+3=6n+3\)
Xét 2 tử số của hai phân số: \(3n+1>3n\)
\(\Rightarrow\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)(phân số nào cùng mẫu, có tử lớn hơn thì lớn hơn)
So sánh các phân số sau:
a,\(\frac{n}{n+1}\) và \(\frac{n+2}{n+3}\)(n thuộc N)
b, \(\frac{n}{2n+1}và\frac{3n+1}{6n+3}\)(n thuộc N)
Mình mới lớp 5 nên không biết làm bài này.
Xin lỗi nha! Chúc bạn may mắn......mình chính là Đào Minh Tiến!
a) \(\frac{n}{n+1}\)và \(\frac{n+2}{n+3}\)
\(\frac{n}{n+1}=\frac{n\cdot\left(n+3\right)}{\left(n+1\right)\cdot\left(n+3\right)}\)
\(\frac{n+2}{n+3}=\frac{\left(n+2\right)\cdot\left(n+1\right)}{\left(n+3\right)\cdot\left(n+1\right)}\)
So sánh : \(n\cdot\left(n+3\right)\)và \(\left(n+2\right)\cdot\left(n+3\right)\)
\(n\cdot\left(n+3\right)=n^2+3n\)
\(\left(n+2\right)\cdot\left(n+3\right)=n^2+5n+6\)
\(n^2+3n< n^2+5n+6\)
\(\Leftrightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)
b) \(\frac{n}{2n+1}\)và \(\frac{3n+1}{6n+3}\)
\(\frac{n}{2n+1}=\frac{n\cdot\left(6n+3\right)}{\left(2n+1\right)\cdot\left(6n+3\right)}\)
\(\frac{3n+1}{6n+3}=\frac{\left(3n+1\right)\cdot\left(2n+1\right)}{\left(6n+3\right)\cdot\left(2n+1\right)}\)
So sánh : \(n\cdot\left(6n+3\right)\)và \(\left(3n+1\right)\cdot\left(2n+1\right)\)
\(n\cdot\left(6n+3\right)=6n^2+3n\)
\(\left(3n+1\right)\cdot\left(2n+1\right)=6n^2+5n+1\)
\(6n^2+3n< 6n^2+5n+1\)
\(\Leftrightarrow\frac{n}{2n+1}< \frac{3n+1}{6n+3}\)
So sánh :
a) \(\frac{-13}{38}\)và \(\frac{29}{-88}\)
b) 3301 và 5199
c) Cho P = \(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n+1\right)\left(2n+3\right)}\). So sánh P với 1
a,
\(-\frac{13}{38}=-1--\frac{25}{38}=-1+\frac{25}{38}\)
\(\frac{29}{-88}=-\frac{29}{88}=-1--\frac{59}{88}=-1+\frac{59}{88}\)
Vì \(\frac{25}{38}< \frac{59}{88}\Rightarrow-\frac{13}{38}< \frac{29}{-88}\)
b,
Ta có:
3301 > 3300 = [33]100 = 27100
5199 < 5200 = [52]100 = 25100
Mà 27100 > 25100 => 3301 > 5199
c,
\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left[2n+1\right]\left[2n+3\right]}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\)
\(=1-\frac{1}{2n+3}< 1\)
Vậy P < 1
\(5^{199}=\left(5^{\frac{199}{301}}\right)^{301}\)
\(5^{\frac{199}{301}}< 3^1\)
\(\Leftrightarrow5^{199}< 3^{301}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n+1}-\frac{1}{2n+3}\)
\(=1-\frac{1}{2n+3}< 1\)
so sánh hai biểu thức sau:
A=\(\frac{n}{n+1}\)+ \(\frac{n+1}{n+2}\)
B=\(\frac{2n+1}{2n+3}\)(n\(\in\)\(ℕ^∗\))
So sánh các cặp phân số sau:
a) \(\frac{n}{n+1}\)và\(\frac{n+2}{n+3}\)\(\forall\)n \(\in\)\(ℕ\)
b) \(\frac{n}{2n+1}\)và \(\frac{2n+3}{4n+2}\)\(\forall\)n \(\in\)\(ℕ\)
c) \(\frac{n}{n+3}\)và\(\frac{2n+1}{3n+4}\)\(\forall\)n\(\inℕ\)
d) \(\frac{2017}{2020}\)và\(\frac{2018}{2019}\)
So sanh A và B
A=\(\frac{n}{n+1}\)+\(\frac{n+1}{n+2}\)
B=\(\frac{2n+1}{2n+3}\)(n thuộc N sao)
cần gấp
Ta có : \(A=\frac{n}{n+1}+\frac{n+1}{n+2}\)
\(B=\frac{n}{2n+3}+\frac{n+1}{2n+3}\)
Do \(2n+3>n+1;n+2\)(n khác 0)
\(n=n;n+1=n+1\)
Vì mẫu lớn hơn và tử bằng nhau suy ra
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{2n+3}+\frac{n+1}{2n+3}=B\)
\(< =>A>B\)