Số nguyên dương x thảo mãn \(\frac{x}{9}< \frac{7}{x}< \frac{x}{6}\) là
Cho x, y, z là 3 số nguyên dương nguyên tố cùng nhau thảo mãn \(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\)
Chứng minh rằng x + y là số chính phương
tìm các số nguyên dương x,y,z khác nhau thảo mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tìm số nguyên dương X sao cho \(\frac{x}{9}< \frac{7}{x}< \frac{x}{6}\)
1) Có những cặp số nguyên nào thỏa mãn x.y=x+y
2) Tìm tập hợp A các số x nguyên dương thỏa mãn
\(x.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{6.7}\right)<1\frac{6}{7}\)
1)
\(xy-y=x\Leftrightarrow y=\frac{x}{x-1}=1+\frac{1}{x-1}\)
y thuộc Z => x -1 thuộc U(1) ={ -1;1}
+x =-1 => y =0
+x =1 => y =2
2) \(x.\left(1-\frac{1}{7}\right)<1\frac{6}{7}\Leftrightarrow x.\frac{6}{7}<\frac{13}{7}\Rightarrow x<\frac{13}{7}.\frac{7}{6}=\frac{13}{6}=2,1\left(6\right)\)
x thuộc Z+ => x thuộc {1;2}
1)Có những cặp số nguyên nào thỏa mãn x*y=x+y?
2) Tìm tập hợp A các số x nguyên dương thỏa mãn
\(x.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{6.7}\right)<1\frac{6}{7}\)
Bài này bạn đăng rồi Nguyễn Nhật Minh trả lời đúng rồi mà :
http://olm.vn/hoi-dap/question/314450.html
1) Giá trị x thuộc Z để \(\frac{x-5}{7-x}\)là số hữu tỉ dương là x=...
2) Cặp số nguyên dương chẳng x; y thỏa mãn biểu thức \(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)là: x=...; y=...
Nếu là thi Vio thì chỉ điền đáp số
a) x =6.
b) x = 1; y = 4
Giải kiểu VIO ra đáp số khác với trình bày. 2 bài này đều nhẩm được.
a) Để PS đã cho >0 thì 5<x<7. x chỉ bằng 6 thay vào đúng. Ko cần tìm tiếp
b) Để mẫu chung bằng 4 thì y phải =4; => x = 1. Thỏa mãn.
Cách nhẩm tuy không chặt chẽ bằng bài giải chi tiết nhưng VIO thì rất hiệu quả. Mình trình bày cách nghĩ của mình mong các bạn góp ý.
cho x,y,z là các số thực dương thảo mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=6\)= 6 .Tìm GTNN của biểu thức
M = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Nhớ mang máng câu này hồi trước có giải rồi. Thôi tự vô tìm đi nha
1) Với x, y là các số thực dương thảo mãn \(\frac{x}{2}+\frac{y}{3}+\frac{xy}{6}=3\), chứng minh rằng \(27x^3+8y^3\ge432\)
2) Với a, b, c không âm thỏa mãn \(a^2+b^2+c^2=1\), chứng minh rằng \(a^3+2b^3+3c^3\ge\frac{6}{7}\)
3) Cho x, y, z là các số thực dương có tổng bằng 1, chứng minh rằng \(x+\sqrt{xy}+\sqrt[3]{xyz}\le\frac{4}{3}\)
Tìm các số nguyên x để các số hữu tỉ sau thỏa mãn
a)\(\frac{x-7}{x-11}\)là số hữu tỉ âm
2)\(\frac{x+2}{x-6}\)là số hữu tỉ âm
3)\(\frac{x-3}{x+7}\)là số hữu tỉ âm
4)\(\frac{x-3}{x+7}\)là số hữu tỉ dương